Zobrazeno 1 - 10
of 175
pro vyhledávání: '"Ye, Yangbo"'
Autor:
Luo, Qi, Ye, Yangbo
Let $\lambda(n)$ and $\mu(n)$ denote the Liouville function and the M\"obius function, respectively. In this study, relationships between the values of $\lambda(n)$ and $\lambda(n+h)$ up to $n\leq10^8$ for $1\leq h\leq1,000$ are explored. Chowla's co
Externí odkaz:
http://arxiv.org/abs/2401.18082
Let $f$ and $g$ be holomorphic cusp forms for the modular group $SL_2(\mathbb Z)$ of weight $k_1$ and $k_2$ with Fourier coefficients $\lambda_f(n)$ and $\lambda_g(n)$, respectively. For real $\alpha\neq0$ and $0<\beta\leq1$, consider a smooth resona
Externí odkaz:
http://arxiv.org/abs/2209.03856
Publikováno v:
In Weather and Climate Extremes December 2023 42
Publikováno v:
In Urban Climate November 2023 52
Publikováno v:
In Computers in Biology and Medicine September 2023 163
Publikováno v:
In Journal of Number Theory May 2023 246:166-188
Autor:
Ye, Yangbo
Publikováno v:
In Journal of Number Theory July 2022 236:128-143
An $n$th-order first derivative test for oscillatoric integrals is established. When the phase has a single stationary point, an $n$th-order asymptotic expansion of a weighted stationary phase integral is proved for arbitrary $n\geq1$. This asymptoti
Externí odkaz:
http://arxiv.org/abs/1601.07887
Let $f$ be a fixed self-contragradient Hecke-Maass form for $SL(3,\mathbb Z)$, and $u$ an even Hecke-Maass form for $SL(2,\mathbb Z)$ with Laplace eigenvalue $1/4+k^2$, $k>0$. A subconvexity bound $O\big(k^{4/3+\varepsilon}\big)$ in the eigenvalue as
Externí odkaz:
http://arxiv.org/abs/1510.01219
Let $\pi$ be a unitary automorphic cuspidal representation of $GL_2(\mathbb{Q}_\mathbb{A})$ with Fourier coefficients $\lambda_\pi(n)$. Asymptotic expansions of certain sums of $\lambda_\pi(n)$ are proved using known functorial liftings from $GL_2$,
Externí odkaz:
http://arxiv.org/abs/1510.01208