Zobrazeno 1 - 10
of 68
pro vyhledávání: '"Ye, Weikui"'
Publikováno v:
Journal of Functional Analysis 287 (2024) 110527
In this paper, we investigate the Cauchy problem for the three dimensional inviscid Boussinesq system in the periodic setting. For $1\le p\le \infty$, we show that the threshold regularity exponent for $L^p$-norm conservation of temperature of this s
Externí odkaz:
http://arxiv.org/abs/2406.05337
Publikováno v:
Journal of Functional Analysis, 286(2024)110302
In this paper, we prove a sharp ill-posedness result for the incompressible non-resistive MHD equations. In any dimension $d\ge 2$, we show the ill-posedness of the non-resistive MHD equations in $H^{\frac{d}{2}-1}(\mathbb{R}^d)\times H^{\frac{d}{2}}
Externí odkaz:
http://arxiv.org/abs/2404.14825
Autor:
Guo, Yingying, Ye, Weikui
In this paper, we consider the Cauchy problem for the $b$-equation. Firstly, for $s>\frac32,$ if $u_{0}(x)\in H^{s}(\mathbb{R})$ and $m_{0}(x)=u_{0}(x)-u_{0xx}(x)\in L^{1}(\mathbb{R}),$ the global solutions of the $b$-equation is established when $b\
Externí odkaz:
http://arxiv.org/abs/2402.15128
Autor:
Miao, Changxing, Ye, Weikui
Publikováno v:
Journal de Mathematiques Pures et Appliquees , 181 (2024) 190-227
In this paper, we prove the non-uniqueness of three-dimensional magneto-hydrodynamic (MHD) system in $C([0,T];L^2(\mathbb{T}^3))$ for any initial data in $H^{\bar{\beta}}(\mathbb{T}^3)$~($\bar{\beta}>0$), by exhibiting that the total energy and the c
Externí odkaz:
http://arxiv.org/abs/2208.08311
Autor:
Nie, Yao, Ye, Weikui
In this paper, we prove a sharp and strong non-uniqueness for a class of weak solutions to the three-dimensional magneto-hydrodynamic (MHD) system. More precisely, we show that any weak solution $(v,b)\in L^p_tL^{\infty}_x$ is non-unique in $L^p_tL^{
Externí odkaz:
http://arxiv.org/abs/2208.00228
Let $0<\beta<\bar\beta<1/3$. We construct infinitely many distributional solutions in $C^{\beta}_{x,t}$ to the three-dimensional Euler equations that do not conserve the energy, for a given initial data in $C^{\bar\beta}$. We also show that there is
Externí odkaz:
http://arxiv.org/abs/2204.03344
Autor:
Ye, Weikui, Zhao, Bin
Publikováno v:
In Nonlinear Analysis: Real World Applications October 2024 79
For the famous Camassa-Holm equation, the well-posedness in $B^{1+\frac{1}{p}}_{p,1}(\mathbb{R})$ with $ p\in [1,\infty)$ and the ill-posedness in $B^{1+\frac{1}{p}}_{p,r}(\mathbb{R})$ with $ p\in [1,\infty],\ r\in (1,\infty]$ had been studied in \ci
Externí odkaz:
http://arxiv.org/abs/2112.10081
Publikováno v:
In Journal of Differential Equations 25 December 2024 413:828-850
In this paper, we consider the 2-dimensional non-viscous Oldroyd-B model. In the case of the ratio equal 1~($\alpha=0$), it is a difficult case since the velocity field $u(t,x)$ is no longer decay. Fortunately, by {observing the exponential decay} of
Externí odkaz:
http://arxiv.org/abs/2110.09517