Zobrazeno 1 - 10
of 25
pro vyhledávání: '"Yazici, Ozcan"'
Autor:
Kişisel, Ali Ulaş Özgür, Yazici, Ozcan
Let $\mathbb F_a$ denote the Hirzebruch surfaces and $\mathcal{T}_{\alpha,\alpha^{\prime}}(\mathbb{F}_{a})$ denotes the set of positive, closed $(1,1)$-currents on $\mathbb{F}_{a}$ whose cohomology class is $\alpha F+\alpha^{\prime} H$ where $F$ and
Externí odkaz:
http://arxiv.org/abs/2209.13567
Autor:
Kişisel, Ali Ulaş Özgür, Yazici, Ozcan
Publikováno v:
Mathematische Zeitschrift (2022)
Let $T$ be a positive closed current of bidimension $(1,1)$ with unit mass on $\mathbb P^2$ and $V_{\alpha}(T)$ be the upper level sets of Lelong numbers $\nu(T,x)$ of $T$. For any $\alpha\geq \frac{1}{3}$, we show that $|V_{\alpha}(T)\setminus C|\le
Externí odkaz:
http://arxiv.org/abs/2105.06248
Autor:
Yazici, Ozcan
Publikováno v:
Mediterranean Journal of Mathematics volume 19, Article number: 24 (2022)
In [6], D'Angelo introduced the notion of finite type for points $p$ of a real hypersurface $M$ of $\mathbb C^n$ by defining the order of contact $\Delta_q(M,p)$ of complex analytic $q$-dimensional varieties with $M$ at $p$. Later, Catlin [4] defined
Externí odkaz:
http://arxiv.org/abs/2103.07898
Autor:
Yazici, Ozcan
Publikováno v:
Journal of Mathematical Analysis and Applications, July 2020
In [4], D'Angelo introduced the notion of points of finite type for a real hypersurface $M$ in $\mathbb C^n$ and showed that the set of points of finite type in $M$ is open. Later, Lamel-Mir [8] considered a natural extension of D'Angelo's definition
Externí odkaz:
http://arxiv.org/abs/1912.02618
Autor:
Yazici, Ozcan
Publikováno v:
Ann. Mat. Pura Appl. (2020)
Let $M\subset \mathbb C^n$ be a real analytic hypersurface, $M'\subset \mathbb C^N$ $(N\geq n)$ be a strongly pseudoconvex real algebraic hypersurface of the special form and $F$ be a meromorphic mapping in a neighborhood of a point $p\in M$ which is
Externí odkaz:
http://arxiv.org/abs/1903.04633
Autor:
Yazici, Ozcan
Publikováno v:
Complex Variables and Elliptic Equations (2016)
Quadratic automorphisms of $\mathbb C^3$ are classified up to affine conjugacy into seven classes by Forn$\ae$ss and Wu. Five of them contain irregular maps with interesting dynamics. In this paper, we focus on the maps in the fifth class and make so
Externí odkaz:
http://arxiv.org/abs/1509.05444
Autor:
Yazici, Ozcan
Publikováno v:
In Journal of Mathematical Analysis and Applications 1 July 2020 487(1)
Autor:
Yazici, Ozcan
Publikováno v:
Illinois J. Math. Volume 58, Number 1 (2014), 219-231
Let $X$ be an algebraic subvariety of $\mathbb C^n$ and $\bar X$ be its closure in $\mathbb P^n.$ In their paper \cite{CGZ} Coman-Guedj-Zeriahi proved that any plurisubharmonic function with logarithmic growth on $X$ extends to a plurisubharmonic fun
Externí odkaz:
http://arxiv.org/abs/1402.1812
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.