Zobrazeno 1 - 10
of 72
pro vyhledávání: '"Yavar Kian"'
Publikováno v:
Forum of Mathematics, Sigma, Vol 12 (2024)
We investigate an inverse boundary value problem of determination of a nonlinear law for reaction-diffusion processes, which are modeled by general form semilinear parabolic equations. We do not assume that any solutions to these equations are known
Externí odkaz:
https://doaj.org/article/fc3e83e8c3394567a860cca88aa515bf
Autor:
Yavar Kian
Publikováno v:
Cubo, Vol 14, Iss 2, Pp 153-173 (2012)
Considere el problema mixto con condiciones de Dirichlet asociadas a la ecuación de onda , donde la metrica escalar a(t; x) es T-periódica en t y uniformemente igual a 1 fuera de un conjunto compacto en x, sobre un dominio T-periodico. Sea U(t,0) e
Externí odkaz:
https://doaj.org/article/10faaa96ab36486ca7116c43d8965cb3
Autor:
Ali Feizmohammadi, Yavar Kian
Publikováno v:
Asymptotic Analysis. 131:513-539
We consider the formally determined inverse problem of recovering an unknown time-dependent potential function from the knowledge of the restriction of the solution of the wave equation to a small subset, subject to a single external source. We show
Publikováno v:
Annales de l'Institut Fourier. 71:2471-2517
Publikováno v:
Analysis and Applications.
Autor:
Yavar Kian, Gunther Uhlmann
Publikováno v:
Archive for Rational Mechanics and Analysis
Archive for Rational Mechanics and Analysis, 2023, 247 (1), pp.6. ⟨10.1007/s00205-022-01831-y⟩
Archive for Rational Mechanics and Analysis, 2023, 247 (1), pp.6. ⟨10.1007/s00205-022-01831-y⟩
International audience; We consider the inverse problem of determining a general semilinear term appearing in nonlinear parabolic equations. For this purpose, we derive a new criterion that allows to prove global recovery of some general class of sem
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::01ae71d28faba37c6df6cb7a3e86a7da
https://hal.science/hal-03953485
https://hal.science/hal-03953485
Autor:
Masaru Ikehata, Yavar Kian
Publikováno v:
Inverse Problems and Imaging
Inverse Problems and Imaging, 2023, 17 (1), pp.180-202. ⟨10.3934/ipi.2022036⟩
Inverse Problems and Imaging, 2023, 17 (1), pp.180-202. ⟨10.3934/ipi.2022036⟩
International audience; This paper is concerned with a new type of inverse obstacle problem governed by a variable-order time-fraction diffusion equation in a bounded domain. The unknown obstacle is a region where the space dependent variable-order o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::bff5f381f1062c57e92749281d6ff5e5
https://hal.science/hal-03953490/file/2202.02726.pdf
https://hal.science/hal-03953490/file/2202.02726.pdf
Autor:
Yavar Kian, Yosra Soussi
Publikováno v:
Mathematical Methods in the Applied Sciences
Mathematical Methods in the Applied Sciences, 2021, 44 (17), pp.13421-13447. ⟨10.1002/mma.7636⟩
Mathematical Methods in the Applied Sciences, Wiley, In press, ⟨10.1002/mma.7636⟩
Mathematical Methods in the Applied Sciences, 2021, 44 (17), pp.13421-13447. ⟨10.1002/mma.7636⟩
Mathematical Methods in the Applied Sciences, Wiley, In press, ⟨10.1002/mma.7636⟩
We consider the inverse problem of determining an electromagnetic potential appearing in an infinite cylindrical domain from boundary measurements. More precisely, we prove the stable recovery of some general class of magnetic field and electric pote
Publikováno v:
Nonlinear Analysis: Theory, Methods and Applications
Nonlinear Analysis: Theory, Methods and Applications, 2022, 222, pp.112921. ⟨10.1016/j.na.2022.112921⟩
Nonlinear Analysis: Theory, Methods and Applications, 2022, 222, pp.112921. ⟨10.1016/j.na.2022.112921⟩
We study the inverse problem of recovering a semilinear diffusion term $a(t,\lambda)$ as well as a quasilinear convection term $\mathcal B(t,x,\lambda,\xi)$ in a nonlinear parabolic equation $$\partial_tu-\textrm{div}(a(t,u) \nabla u)+\mathcal B(t,x,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::51abd463d563d5be93c7be3be9c0bc19
https://hal.science/hal-03971250
https://hal.science/hal-03971250
Autor:
Masahiro Yamamoto, Yavar Kian
Publikováno v:
Fractional Calculus and Applied Analysis
Fractional Calculus and Applied Analysis, De Gruyter, 2021, 24 (1), pp.168-201. ⟨10.1515/fca-2021-0008⟩
Fractional Calculus and Applied Analysis, 2021, 24 (1), pp.168-201. ⟨10.1515/fca-2021-0008⟩
Fractional Calculus and Applied Analysis, De Gruyter, 2021, 24 (1), pp.168-201. ⟨10.1515/fca-2021-0008⟩
Fractional Calculus and Applied Analysis, 2021, 24 (1), pp.168-201. ⟨10.1515/fca-2021-0008⟩
International audience; Abstract We study the well-posedness for initial boundary value problems associated with time fractional diffusion equations with non-homogenous boundary and initial values. We consider both weak and strong solutions for the p