Zobrazeno 1 - 10
of 1 097
pro vyhledávání: '"Yauhen"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
We consider the problem of collaborative personalized mean estimation under a privacy constraint in an environment of several agents continuously receiving data according to arbitrary unknown agent-specific distributions. In particular, we provide a
Externí odkaz:
http://arxiv.org/abs/2411.07094
Autor:
Pfeiffer, Pascal, Singer, Philipp, Babakhin, Yauhen, Fodor, Gabor, Dhankhar, Nischay, Ambati, Sri Satish
We present H2O-Danube3, a series of small language models consisting of H2O-Danube3-4B, trained on 6T tokens and H2O-Danube3-500M, trained on 4T tokens. Our models are pre-trained on high quality Web data consisting of primarily English tokens in thr
Externí odkaz:
http://arxiv.org/abs/2407.09276
Autor:
Theodosiou, Antreas, Henderson-Sapir, Ori, Baravets, Yauhen, Cobcroft, Oliver T., Sentschuk, Samuel M., Stone, Jack A., Ottaway, David J., Peterka, Pavel
This study explores the efficacy of thermal splicing conditions between silica and zirconium-fluoride fibers, focusing on achieving mechanical strength between the two fibers. A comprehensive characterization of the thermal profile in the hot zone of
Externí odkaz:
http://arxiv.org/abs/2407.12811
Autor:
Bakshi, Mayank, Ghasvarianjahromi, Sara, Yakimenka, Yauhen, Beemer, Allison, Kosut, Oliver, Kliewer, Joerg
We introduce the paradigm of validated decentralized learning for undirected networks with heterogeneous data and possible adversarial infiltration. We require (a) convergence to a global empirical loss minimizer when adversaries are absent, and (b)
Externí odkaz:
http://arxiv.org/abs/2405.07316
Autor:
Singer, Philipp, Pfeiffer, Pascal, Babakhin, Yauhen, Jeblick, Maximilian, Dhankhar, Nischay, Fodor, Gabor, Ambati, Sri Satish
We present H2O-Danube, a series of small 1.8B language models consisting of H2O-Danube-1.8B, trained on 1T tokens, and the incremental improved H2O-Danube2-1.8B trained on an additional 2T tokens. Our models exhibit highly competitive metrics across
Externí odkaz:
http://arxiv.org/abs/2401.16818
Autor:
Yauhen G. Shvaiko
Publikováno v:
Вестник Московского университета. Серия 14: Психология, Vol 47, Iss 3, Pp 105-122 (2024)
Background. Understanding of emotional aspects of painful experiences can significantly expand the therapeutic tools for both doctors and psychologists. Objective. The focus is placed on the study of the relationship between psychological and somatic
Externí odkaz:
https://doaj.org/article/3813b394920646fd9e1133d954e525fc
We consider the straggler problem in decentralized learning over a logical ring while preserving user data privacy. Especially, we extend the recently proposed framework of differential privacy (DP) amplification by decentralization by Cyffers and Be
Externí odkaz:
http://arxiv.org/abs/2212.03080