Zobrazeno 1 - 10
of 84
pro vyhledávání: '"Yattselev, Maxim L."'
Autor:
Yattselev, Maxim L.
Let $ \mu_1 $ and $ \mu_2 $ be two, in general complex-valued, Borel measures on the real line such that $ \mathrm{supp} \,\mu_1 =[\alpha_1,\beta_1] < \mathrm{supp}\,\mu_2 =[\alpha_2,\beta_2] $ and $ d\mu_i(x) = -\rho_i(x)dx/2\pi\mathrm{i} $, where $
Externí odkaz:
http://arxiv.org/abs/2411.04206
Motivated by the simplest case of tt*-Toda equations, we study the large and small $x$ asymptotics for $x>0$ of real solutions of the sinh-Godron Painlev\'e III($D_6$) equation. These solutions are parametrized through the monodromy data of the corre
Externí odkaz:
http://arxiv.org/abs/2410.22440
We describe the pole-free regions of the one-parameter family of special solutions of P$_\mathrm{II}$, the second Painlev\'e equation, constructed from the Airy functions. This is achieved by exploiting the connection between these solutions and the
Externí odkaz:
http://arxiv.org/abs/2403.03023
We show that the one-parameter family of special solutions of P$_\mathrm{II}$, the second Painlev\'e equation, constructed from the Airy functions, as well as associated solutions of P$_\mathrm{XXXIV}$ and S$_\mathrm{II}$, can be expressed via the re
Externí odkaz:
http://arxiv.org/abs/2310.14898
We investigate asymptotic behavior of polynomials $ Q_n(z) $ satisfying non-Hermitian orthogonality relations $$ \int_\Delta s^kQ_n(s)\rho(s)ds =0, \quad k\in\{0,\ldots,n-1\}, $$ where $ \Delta $ is a Chebotar\"ev (minimal capacity) contour connectin
Externí odkaz:
http://arxiv.org/abs/2303.17037
Autor:
Yattselev, Maxim L.
$\bar\partial$-extension of the matrix Riemann-Hilbert method is used to study asymptotics of the polynomials $P_n(z)$ satisfying orthogonality relations \[ \int_{-1}^1 x^lP_n(x)\frac{\rho(x)dx}{\sqrt{1-x^2}}=0, \quad l\in\{0,\ldots,n-1\}, \] where $
Externí odkaz:
http://arxiv.org/abs/2202.10374
Autor:
Yattselev, Maxim L.
Publikováno v:
J. Approx. Theory, 278, Paper No. 105738, 2022
Let $ f(z)=\int(z-x)^{-1}d\mu(x) $, where $ \mu $ is a Borel measure supported on several subintervals of $ (-1,1) $ with smooth Radon-Nikodym derivative. We study strong asymptotic behavior of the error of approximation $ (f-r_n)(z) $, where $ r_n(z
Externí odkaz:
http://arxiv.org/abs/2202.00800
Publikováno v:
J. Math. Phys., 63, Paper No. 063303, 2022
We investigate the phase diagram of the complex cubic unitary ensemble of random matrices with the potential $V(M)=-\frac{1}{3}M^3+tM$ where $t$ is a complex parameter. As proven in our previous paper, the whole phase space of the model, $t\in\mathbb
Externí odkaz:
http://arxiv.org/abs/2201.12871
Autor:
Aljubran, Hanan, Yattselev, Maxim L.
Publikováno v:
Rocky Mountain J. Math., 51(4), 1171-1188, 2021
Let $ \{\varphi_i(z;\alpha)\}_{i=0}^\infty $, corresponding to $ \alpha\in(-1,1) $, be orthonormal Geronimus polynomials. We study asymptotic behavior of the expected number of real zeros, say $ \mathbb E_n(\alpha) $, of random polynomials \[ P_n(z)
Externí odkaz:
http://arxiv.org/abs/2012.15055
Autor:
Barhoumi, Ahmad B.1 (AUTHOR) barhoumi@umich.edu, Yattselev, Maxim L.2 (AUTHOR)
Publikováno v:
Constructive Approximation. Apr2024, Vol. 59 Issue 2, p271-331. 61p.