Zobrazeno 1 - 10
of 21
pro vyhledávání: '"Yashar Kiarashi"'
Autor:
Yashar Kiarashinejad, Mohammadreza Zandehshahvar, Sajjad Abdollahramezani, Omid Hemmatyar, Reza Pourabolghasem, Ali Adibi
Publikováno v:
Advanced Intelligent Systems, Vol 2, Iss 2, Pp n/a-n/a (2020)
Herein, a new approach for using the intelligence aspects of artificial intelligence for knowledge discovery rather than device optimization in electromagnetic (EM) nanostructures is presented. This approach uses training data obtained through full
Externí odkaz:
https://doaj.org/article/5df577fa933e4462a307ffb2f91d0eb1
Autor:
Matthew A Reyna, Yashar Kiarashi, Andoni Elola, Jorge Oliveira, Francesco Renna, Annie Gu, Erick A Perez Alday, Nadi Sadr, Ashish Sharma, Jacques Kpodonu, Sandra Mattos, Miguel T Coimbra, Reza Sameni, Ali Bahrami Rad, Gari D Clifford
Publikováno v:
PLOS Digital Health, Vol 2, Iss 9, p e0000324 (2023)
Cardiac auscultation is an accessible diagnostic screening tool that can help to identify patients with heart murmurs, who may need follow-up diagnostic screening and treatment for abnormal cardiac function. However, experts are needed to interpret t
Externí odkaz:
https://doaj.org/article/f221196e307643cfb149198c0594d848
Autor:
Yashar Kiarashi, Soheil Saghafi, Barun Das, Chaitra Hegde, Venkata Siva Krishna Madala, ArjunSinh Nakum, Ratan Singh, Robert Tweedy, Matthew Doiron, Amy D. Rodriguez, Allan I. Levey, Gari D. Clifford, Hyeokhyen Kwon
Publikováno v:
Sensors, Vol 23, Iss 23, p 9517 (2023)
Spatial navigation patterns in indoor space usage can reveal important cues about the cognitive health of participants. In this work, we present a low-cost, scalable, open-source edge computing system using Bluetooth low energy (BLE) beacons for trac
Externí odkaz:
https://doaj.org/article/99e494d34ee94a44840b9ff593ead4cb
Autor:
Mohammadreza Zandehshahvar, Marly van Assen, Hossein Maleki, Yashar Kiarashi, Carlo N. De Cecco, Ali Adibi
Publikováno v:
Scientific Reports, Vol 11, Iss 1, Pp 1-10 (2021)
Abstract We report a new approach using artificial intelligence (AI) to study and classify the severity of COVID-19 using 1208 chest X-rays (CXRs) of 396 COVID-19 patients obtained through the course of the disease at Emory Healthcare affiliated hosp
Externí odkaz:
https://doaj.org/article/fc928e9f3dcc40d7a9ded637eb102963
Autor:
Mohammadreza Zandehshahvar, Marly van Assen, Eun Young Kim, Yashar Kiarashi, Vikranth Keerthipati, Arthur E. Stillman, Peter Filev, Amir H. Davarpanah, Eugene A. Berkowitz, Stefan Tigges, Scott J. Lee, Brianna L. Vey, Carlo De Cecco, Ali Adibi
Publikováno v:
Medical Imaging 2023: Computer-Aided Diagnosis.
Autor:
Mohammadreza Zandehshahvar, Yashar Kiarashi, Muliang Zhu, Daqian Bao, Mohammad Hadigheh Javani, Reza Pourabolghasem, Ali Adibi
Publikováno v:
Photonic and Phononic Properties of Engineered Nanostructures XIII.
Autor:
Mohammadreza Zandehshahvar, Yashar Kiarashi, Muliang Zhu, Daqian Bao, Mohammad H Javani, Reza Pourabolghasem, Ali Adibi
Publikováno v:
ACS Photonics.
Heart murmur detection from phonocardiogram recordings: The George B. Moody PhysioNet Challenge 2022
Autor:
Matthew A. Reyna, Yashar Kiarashi, Andoni Elola, Jorge Oliveira, Francesco Renna, Annie Gu, Erick A. Perez Alday, Nadi Sadr, Ashish Sharma, Jacques Kpodonu, Sandra Mattos, Miguel T. Coimbra, Reza Sameni, Ali Bahrami Rad, Gari D. Clifford
Cardiac auscultation is an accessible diagnostic screening tool that can help to identify patients with heart murmurs for follow-up diagnostic screening and treatment for abnormal cardiac function. However, experts are needed to interpret the heart s
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::3aea09a53e68c706b5d69d514d21b336
https://doi.org/10.1101/2022.08.11.22278688
https://doi.org/10.1101/2022.08.11.22278688
Autor:
Marly van Assen, Mohammadreza Zandehshahvar, Hossein Maleki, Yashar Kiarashi, Timothy Arleo, Arthur E. Stillman, Peter Filev, Amir H. Davarpanah, Eugene A. Berkowitz, Stefan Tigges, Scott J. Lee, Brianna L. Vey, Ali Adibi, Carlo N. De Cecco
Publikováno v:
The British Journal of Radiology. 95
Objective: The purpose was to evaluate reader variability between experienced and in-training radiologists of COVID-19 pneumonia severity on chest radiograph (CXR), and to create a multireader database suitable for AI development. Methods: In this st
Autor:
Ali Adibi, Yashar Kiarashi, Mohammadreza Zandehshahvar, Marly van Assen, Carlo N. De Cecco, Hossein Maleki
Publikováno v:
Scientific Reports, Vol 11, Iss 1, Pp 1-10 (2021)
Scientific Reports
Scientific Reports
We report a new approach using artificial intelligence (AI) to study and classify the severity of COVID-19 using 1208 chest X-rays (CXRs) of 396 COVID-19 patients obtained through the course of the disease at Emory Healthcare affiliated hospitals (At