Zobrazeno 1 - 10
of 20
pro vyhledávání: '"Yaser alizadeh"'
Publikováno v:
مدلسازی و مدیریت آب و خاک, Vol 4, Iss 1, Pp 233-247 (2024)
Introduction The limitation of water resources, increase in water demand for food supply, land use changes, climate change, and reduction of soil fertility are the most important challenges facing the world's food security. Various approaches have be
Externí odkaz:
https://doaj.org/article/64132dddbc6447b39ed9b22edcf07b80
Publikováno v:
علوم محیطی, Vol 17, Iss 4, Pp 121-132 (2019)
Introduction: Diversification of agriculture is considered an important strategy to overcome the challenges faced by many developing countries due to the opportunities it offers to face heterogeneous production conditions, increase income generation
Externí odkaz:
https://doaj.org/article/1a7dcccb2e534bc391757ff6338d2206
Publikováno v:
پژوهشهای بذر ایران, Vol 5, Iss 2, Pp 59-71 (2019)
DOR: 98.1000/2383-1251.1397.5. 59.10.2.32.41 Extended abstract Introduction: Crop rotations are practiced to eliminate the effect of monoculture, but the succeeding crop may be influenced by the phytotoxins released by the preceding crop. Among plan
Externí odkaz:
https://doaj.org/article/d4f7c84f637a4adcb4f1fe528b88f908
Publikováno v:
Journal of Combinatorial Optimization. 41:817-829
The relation between the Wiener index W(G) and the eccentricity $$\varepsilon (G)$$ of a graph G is studied. Lower and upper bounds on W(G) in terms of $$\varepsilon (G)$$ are proved and extremal graphs characterized. A Nordhaus–Gaddum type result
Publikováno v:
Filomat. 35:4637-4643
If G is a graph, and if for e = uv ? E(G) the number of vertices closer to u than to v is denoted by nu, then Mo(G) = ? uv?E(G) |nu-nv| is the Mostar index of G. In this paper, the Mostar index is studied on trees and graph products. Lower and upper
Autor:
Sandi Klavžar, Yaser Alizadeh
Publikováno v:
Bulletin of the Malaysian Mathematical Sciences Society. 44:1123-1134
The eccentric connectivity index of a graph G is $$\xi ^c(G) = \sum _{v \in V(G)}\varepsilon (v)\deg (v)$$ , and the eccentric distance sum is $$\xi ^d(G) = \sum _{v \in V(G)}\varepsilon (v)D(v)$$ , where $$\varepsilon (v)$$ is the eccentricity of v,
Publikováno v:
Bulletin of the Malaysian Mathematical Sciences Society. 43:4443-4456
The irregularity of a graph G is the sum of $$|\mathrm{deg}(u) - \mathrm{deg}(v)|$$ over all edges uv of G. In this paper, this invariant is considered on $$\pi $$ -permutation graphs, Fibonacci cubes, and trees. An upper bound on the irregularity of
Autor:
Yaser Alizadeh, Ali Iranmanesh
Publikováno v:
New Frontiers in Nanochemistry
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::cb72ccae41a394a3e0270769fd9e7a27
https://doi.org/10.1201/9780429022944-13
https://doi.org/10.1201/9780429022944-13
Publikováno v:
Acta Universitatis Sapientiae: Informatica, Vol 10, Iss 2, Pp 218-240 (2018)
Let G be a simple connected graph. The reciprocal transmission Tr′G(ν) of a vertex ν is defined as Tr G ′ ( ν ) = ∑ u ∈ V ( G ) 1 d G ( u , ν ) , u ≠ ν . $${\rm{Tr}}_{\rm{G}}^\prime ({\rm{\nu }}) = \sum\limits_{{\rm{u}} \in {\rm{V}}(G)