Zobrazeno 1 - 10
of 24
pro vyhledávání: '"Yaryong Heo"'
Autor:
Jongho Lee, Sunggeum Hong, Bae Jun Park, Jin Bong Lee, Yejune Park, Yaryong Heo, Chan Woo Yang
Publikováno v:
Mathematische Annalen. 381:499-555
In this paper, we study the Hormander multiplier theorem for multilinear operators. We generalize the result of Tomita (J Funct Anal 259(8):2028–2044, 2010) to wider target spaces and extend that of Grafakos and Van Nguyen (Monatsh Math 190(4):735
Publikováno v:
Mathematical Research Letters. 27:397-434
Publikováno v:
Journal of Mathematical Analysis and Applications. 456:628-661
In this paper, we establish the sharp L p boundedness for the bilinear integral operators with certain hypersingularities that generalize the bilinear Hilbert transform.
Publikováno v:
Transactions of the American Mathematical Society. 369:4597-4629
Let U \mathrm {U} be a bounded open subset of R d \mathbb {R}^d and let Ω \Omega be a Lebesgue measurable subset of U \mathrm {U} . Let γ = ( γ 1 , ⋯ , γ n ) : U ∖ Ω → R n \gamma =(\gamma _1, \cdots , \gamma _n) : \mathrm {U}\setminus \Ome
Autor:
Yaryong Heo
Publikováno v:
Integral Equations and Operator Theory. 86:185-208
In this paper we examine various singular maximal operators, extending the class of operators which have been studied extensively in the past. It extends work that has been done in the one-parameter to the multi-parameter setting. We obtain the \(L^p
Publikováno v:
Journal of Functional Analysis. 279:108652
Publikováno v:
Taiwanese J. Math. 22, no. 6 (2018), 1383-1401
We consider the maximal operators whose averages are taken over some non-smooth and non-convex hypersurfaces. For each $1 \leq i \leq d-1$, let $\phi_i \colon [-1,1] \to \mathbb{R}$ be a continuous function satisfying some derivative conditions, and
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5e06c9c6ed187d2fe7804a5f66dd4b4b
https://projecteuclid.org/euclid.twjm/1520992816
https://projecteuclid.org/euclid.twjm/1520992816
Publikováno v:
Journal of Mathematical Analysis and Applications. 423:1867-1871
The proof of Proposition 1.1 in S. Hong et al. (2014) [3] is erroneous and we reprove it.
Publikováno v:
Bulletin of the Korean Mathematical Society. 51:965-978
In this paper we establish sharp L p -regularity estimates for averaging operators with convolution kernel associated to hypersurfaces in Rd(d ≥ 2) of the form y 7→(y,(y)) where y ∈ Rd−1 and (y) = P d−1 i=1 ±|yi| mi with 2 ≤ m1 ≤ ··
Publikováno v:
Journal of Mathematical Analysis and Applications. 412:244-268
We prove sharp L p -Sobolev estimates for averaging operators associated with a certain type of convex hypersurface in R 3 .