Zobrazeno 1 - 2
of 2
pro vyhledávání: '"Yaryna Stelmakh"'
The $Golomb$ $space$ (resp. the $Kirch$ $space$) is the set $\mathbb N$ of positive integers endowed with the topology generated by the base consisting of arithmetic progressions $a+b\mathbb N_0=\{a+bn:n\ge 0\}$ where $a\in\mathbb N$ and $b$ is a (sq
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::56ed5e83bfd69abfbd2289433b91553e
http://arxiv.org/abs/2006.12357
http://arxiv.org/abs/2006.12357
Autor:
Yaryna Stelmakh, Taras Banakh
Publikováno v:
Topology and its Applications. 309:107909
A Hausdorff topological space X is called superconnected (resp. coregular) if for any nonempty open sets U 1 , … U n ⊆ X , the intersection of their closures U ‾ 1 ∩ … ∩ U ‾ n is not empty (resp. the complement X ∖ ( U ‾ 1 ∩ …