Zobrazeno 1 - 10
of 101
pro vyhledávání: '"Yao, Jinghua"'
Autor:
Wei, Mumeng1 (AUTHOR) syamm2011@163.com, Yao, Jinghua1 (AUTHOR) yaolele725@163.com, Chen, Yufan1 (AUTHOR) chenyufan96111@hotmail.com, Yang, Bojun1 (AUTHOR) yangbojun.123@163.com, Chen, Dichun1 (AUTHOR) chunzi_79@163.com, Cai, Yikun2 (AUTHOR) caiyikun@scu.edu.cn
Publikováno v:
Materials (1996-1944). Aug2024, Vol. 17 Issue 16, p4042. 22p.
Publikováno v:
In Ecotoxicology and Environmental Safety 15 September 2024 283
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
We investigate the following Dirichlet problem with variable exponents: \begin{equation*} \left\{ \begin{array}{l} -\bigtriangleup _{p(x)}u=\lambda \alpha (x)\left\vert u\right\vert ^{\alpha (x)-2}u\left\vert v\right\vert ^{\beta (x)}+F_{u}(x,u,v),\t
Externí odkaz:
http://arxiv.org/abs/1607.00584
We investigate the existence and multiplicity of solutions to the following $p(x)$-Laplacian problem in $\mathbb{R}^{N}$ via critical point theory \begin{equation*} \left\{ \begin{array}{l} -\bigtriangleup _{p(x)}u+V(x)\left\vert u\right\vert ^{p(x)-
Externí odkaz:
http://arxiv.org/abs/1607.00581
Autor:
Yao, Jinghua, Wang, Xiaoyan
We prove that the famous diffusive Brusselator model can support more complicated spatial-temporal wave structure than the usual temporal-oscillation from a standard Hopf bifurcation. In our investigation, we discover that the diffusion term in the m
Externí odkaz:
http://arxiv.org/abs/1510.00891
We rigorously show that a class of systems of partial differential equations modeling wave bifurcations supports stationary equivariant bifurcation dynamics through deriving its full dynamics on the center manifold(s). A direct consequence of our res
Externí odkaz:
http://arxiv.org/abs/1406.5264
Extending work of Texier and Zumbrun in the semilinear non-re ection symmetric case, we study O(2) transverse Hopf bifurcation, or \cellular instability," of viscous shock waves in a channel, for a class of quasilinear hyperbolic{parabolic systems in
Externí odkaz:
http://arxiv.org/abs/1401.2197
Autor:
Li, Tong, Yao, Jinghua
The equivariant Hopf bifurcation dynamics of a class of system of partial differential equations is carefully studied. The connections between the current dynamics and fundamental concepts in hyperbolic conservation laws are explained. The unique app
Externí odkaz:
http://arxiv.org/abs/1312.4248