Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Yanping Ran"'
Autor:
Wenlin Wu, Jie Hong, Yanping Ran, Wenxiao Wu, Haixia Zhu, Chi Hou, Yuanyuan Gao, Yulin Tang, Yinting Liao, Wen-Xiong Chen, Xiaojing Li
Publikováno v:
Heliyon, Vol 10, Iss 23, Pp e40680- (2024)
Ofatumumab (OFA) is an anti-CD20 antibody. We assessed the therapeutic potential of OFA in five pediatric anti-NMDAR encephalitis patients who showed poor responses to the first-line immunotherapy. OFA treatment showed clinical improvement including
Externí odkaz:
https://doaj.org/article/f95d2e96d1cc4894aaa2b32ddc59fdd9
Autor:
Yanping Ran, Jing Li
Publikováno v:
Boundary Value Problems, Vol 2018, Iss 1, Pp 1-29 (2018)
Abstract In this paper, the well-posedness for the non-autonomous reaction–diffusion equation with infinite delays on a bounded domain is established. The existence of pullback attractors for the process in Cγ,Lr(Ω) $C_{\gamma,L^{r}(\Omega)}$ and
Externí odkaz:
https://doaj.org/article/7d5d3710e8624003860cbc6d19a78fc5
Publikováno v:
Abstract and Applied Analysis, Vol 2015 (2015)
Four (2+1)-dimensional nonlinear evolution equations, generated by the Jaulent-Miodek hierarchy, are investigated by the bifurcation method of planar dynamical systems. The bifurcation regions in different subsets of the parameters space are obtained
Externí odkaz:
https://doaj.org/article/d12309b7a1a3480389c7f9dd30d269d4
Autor:
Yanping Ran, Qihong Shi
Publikováno v:
Mathematical Methods in the Applied Sciences. 41:4612-4640
Autor:
Jing Li, Yanping Ran
Publikováno v:
Boundary Value Problems, Vol 2018, Iss 1, Pp 1-29 (2018)
In this paper, the well-posedness for the non-autonomous reaction–diffusion equation with infinite delays on a bounded domain is established. The existence of pullback attractors for the process in $C_{\gamma,L^{r}(\Omega)}$ and $C_{\gamma,W^{1,r}(
Autor:
Yanping Ran, Qihong Shi
Publikováno v:
Journal of Mathematical Physics. 58:111509
In this paper, we consider the 3-dimensional Klein-Gordon-Schrodinger system under the dinucleon interactions. By introducing the atomic spaces and establishing local Strichartz estimates for the perturbed Schrodinger equation to overcome the lack of
Publikováno v:
Abstr. Appl. Anal.
Abstract and Applied Analysis, Vol 2015 (2015)
Abstract and Applied Analysis, Vol 2015 (2015)
Four (2+1)-dimensional nonlinear evolution equations, generated by the Jaulent-Miodek hierarchy, are investigated by the bifurcation method of planar dynamical systems. The bifurcation regions in different subsets of the parameters space are obtained
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e26d00203481457cf470e5c9af95d140
http://projecteuclid.org/euclid.aaa/1429104592
http://projecteuclid.org/euclid.aaa/1429104592