Zobrazeno 1 - 10
of 564
pro vyhledávání: '"Yannis Avrithis"'
Publikováno v:
EURASIP Journal on Information Security, Vol 2020, Iss 1, Pp 1-12 (2020)
Abstract This paper investigates the visual quality of the adversarial examples. Recent papers propose to smooth the perturbations to get rid of high frequency artifacts. In this work, smoothing has a different meaning as it perceptually shapes the p
Externí odkaz:
https://doaj.org/article/a57438bb77614f47b5968f003709067f
Autor:
Ioannis Kakogeorgiou, Spyros Gidaris, Bill Psomas, Yannis Avrithis, Andrei Bursuc, Konstantinos Karantzalos, Nikos Komodakis
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783031200557
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::e778a9eace90891db6bdbb8cfe67e48b
https://doi.org/10.1007/978-3-031-20056-4_18
https://doi.org/10.1007/978-3-031-20056-4_18
Publikováno v:
ACM Multimedia, Trustworthy AI Workshop
Trustworthy AI 2021-1st International Workshop on Trustworthy AI for Multimedia Computing
Trustworthy AI 2021-1st International Workshop on Trustworthy AI for Multimedia Computing, Oct 2021, Virtual, China. pp.1-10, ⟨10.1145/3475731.3484955⟩
Trustworthy AI @ ACM Multimedia
Trustworthy AI 2021-1st International Workshop on Trustworthy AI for Multimedia Computing
Trustworthy AI 2021-1st International Workshop on Trustworthy AI for Multimedia Computing, Oct 2021, Virtual, China. pp.1-10, ⟨10.1145/3475731.3484955⟩
Trustworthy AI @ ACM Multimedia
International audience; Deep Neural Networks (DNNs) are robust against intra-class variability of images, pose variations and random noise, but vulnerable to imperceptible adversarial perturbations that are well-crafted precisely to mislead. While ra
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::233a0cc4eb4ee96b470421820742f8f4
https://hal.archives-ouvertes.fr/hal-03363999
https://hal.archives-ouvertes.fr/hal-03363999
We address representation learning for large-scale instance-level image retrieval. Apart from backbone, training pipelines and loss functions, popular approaches have focused on different spatial pooling and attention mechanisms, which are at the cor
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f918ae635527e10ab1528afafb8ec881
http://arxiv.org/abs/2107.08000
http://arxiv.org/abs/2107.08000
L’apprentissage automatique utilisant des réseaux neuronaux profonds appliqués à la reconnaissance d’images fonctionne extrêmement bien. Néanmoins, il est possible de modifier intentionnellement et très légèrement les images, modification
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::aa88c7beb17055033bad2264e63a21c8
https://doi.org/10.51926/iste.9026.ch2
https://doi.org/10.51926/iste.9026.ch2
Publikováno v:
Computer Vision and Image Understanding
Computer Vision and Image Understanding, 2019, 179, pp.66-78. ⟨10.1016/j.cviu.2018.10.007⟩
Computer Vision and Image Understanding, Elsevier, 2019, 179, pp.66-78. ⟨10.1016/j.cviu.2018.10.007⟩
Computer Vision and Image Understanding, 2019, 179, pp.66-78. ⟨10.1016/j.cviu.2018.10.007⟩
Computer Vision and Image Understanding, Elsevier, 2019, 179, pp.66-78. ⟨10.1016/j.cviu.2018.10.007⟩
International audience; We present a simple computational model for planar shape decomposition that naturally captures most of the rules and salience measures suggested by psychophysical studies, including the minima and short-cut rules, convexity, a
Autor:
Mateusz Budnik, Yannis Avrithis
Publikováno v:
CVPR 2021-IEEE/CVF Conference on Computer Vision and Pattern Recognition
CVPR 2021-IEEE/CVF Conference on Computer Vision and Pattern Recognition, Jun 2021, Virtual, France. pp.8224-8234, ⟨10.1109/CVPR46437.2021.00813⟩
CVPR
CVPR 2021-IEEE/CVF Conference on Computer Vision and Pattern Recognition, Jun 2021, Virtual, France. pp.8224-8234, ⟨10.1109/CVPR46437.2021.00813⟩
CVPR
International audience; Knowledge transfer from large teacher models to smaller student models has recently been studied for metric learning, focusing on fine-grained classification. In this work, focusing on instance-level image retrieval, we study
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d350298c50cd619bd49ed09e14591266
https://inria.hal.science/hal-03529901
https://inria.hal.science/hal-03529901
Publikováno v:
ICPR 2020-25th International Conference on Pattern Recognition
ICPR 2020-25th International Conference on Pattern Recognition, Jan 2021, Milan, Italy. pp.1-12
International Conference on Pattern Recognition
International Conference on Pattern Recognition, 2020, Milan, Italy
ICPR
ICPR 2020-25th International Conference on Pattern Recognition, Jan 2021, Milan, Italy. pp.1-12
International Conference on Pattern Recognition
International Conference on Pattern Recognition, 2020, Milan, Italy
ICPR
International audience; Active learning typically focuses on training a model on few labeled examples alone, while unlabeled ones are only used for acquisition. In this work we depart from this setting by using both labeled and unlabeled data during
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::12e0a0266c90869a4299232993c0d8b9
https://inria.hal.science/hal-02372102
https://inria.hal.science/hal-02372102
Publikováno v:
ICPR
ICPR 2020-25th International Conference on Pattern Recognition
ICPR 2020-25th International Conference on Pattern Recognition, Jan 2021, Virtual, Italy. pp.1-8
ICPR 2020-25th International Conference on Pattern Recognition, Jan 2021, Virtual, Italy
ICPR 2020-25th International Conference on Pattern Recognition
ICPR 2020-25th International Conference on Pattern Recognition, Jan 2021, Virtual, Italy. pp.1-8
ICPR 2020-25th International Conference on Pattern Recognition, Jan 2021, Virtual, Italy
The challenge in few-shot learning is that available data is not enough to capture the underlying distribution. To mitigate this, two emerging directions are (a) using local image representations, essentially multiplying the amount of data by a const
Publikováno v:
ICPR 2020-25th International Conference on Pattern Recognition
ICPR 2020-25th International Conference on Pattern Recognition, Jan 2021, Virtual, Italy. pp.1-7
ICPR
ICPR 2020-25th International Conference on Pattern Recognition, Jan 2021, Virtual, Italy. pp.1-7
ICPR
International audience; Few-shot learning is often motivated by the ability of humans to learn new tasks from few examples. However, standard few-shot classification benchmarks assume that the representation is learned on a limited amount of base cla
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ee6215dc186a29cd505291b22526336e
https://hal.science/hal-03047532/file/C115.icpr20.few-att.pdf
https://hal.science/hal-03047532/file/C115.icpr20.few-att.pdf