Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Yann Palu"'
View the abstract.
Publikováno v:
Journal of Combinatorial Algebra
Journal of Combinatorial Algebra, 2019, 3 (4), pp.401-438. ⟨10.4171/JCA/35⟩
Journal of Combinatorial Algebra, 2019, 3 (4), pp.401-438. ⟨10.4171/JCA/35⟩
Starting from a locally gentle bound quiver, we define on the one hand a simplicial complex, called the non-kissing complex. On the other hand, we construct a punctured, marked, oriented surface with boundary, endowed with a pair of dual dissections.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8e78ccf9cb0ca4c4b928170681c6bbca
http://arxiv.org/abs/1807.04730
http://arxiv.org/abs/1807.04730
Autor:
Robert J. Marsh, Yann Palu
Publikováno v:
Proceedings of the London Mathematical Society
Proceedings of the London Mathematical Society, London Mathematical Society, 2014, 108 (2), pp.411-440. ⟨10.1112/plms/pdt032⟩
Proceedings of the London Mathematical Society, London Mathematical Society, 2014, 108 (2), pp.411-440. ⟨10.1112/plms/pdt032⟩
We associate a coloured quiver to a rigid object in a Hom-finite 2-Calabi--Yau triangulated category and to a partial triangulation on a marked (unpunctured) Riemann surface. We show that, in the case where the category is the generalised cluster cat
Autor:
Robert J. Marsh, Yann Palu
Publikováno v:
Nagoya Mathematical Journal
Nagoya Mathematical Journal, Duke University Press, 2017, 225, pp.64-99. ⟨10.1017/nmj.2016.27⟩
Nagoya Mathematical Journal, Duke University Press, 2017, 225, pp.64-99. ⟨10.1017/nmj.2016.27⟩
If T and T′ are two cluster-tilting objects of an acyclic cluster category related by a mutation, their endomorphism algebras are nearly-Morita equivalent (Buan et al., Cluster-tilted algebras, Trans. Amer. Math. Soc. 359(1) (2007), 323–332 (elec
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::04c17859bb30a64b8ed9f91ed1e0f47e
https://hal.archives-ouvertes.fr/hal-02140340
https://hal.archives-ouvertes.fr/hal-02140340
Autor:
Peter Jørgensen, Yann Palu
Publikováno v:
Transactions of the American Mathematical Society. 365:1125-1147
We construct a Caldero-Chapoton map on a triangulated category with a cluster tilting subcategory which may have infinitely many indecomposable objects. The map is not necessarily defined on all objects of the triangulated category, but we show that
Autor:
Yann Palu
Publikováno v:
Proceedings of the London Mathematical Society. 104:57-78
Let $\mathcal{C}$ be a Hom-finite triangulated 2-Calabi-Yau category with a cluster tilting object. Under some constructibility assumptions on $\mathcal{C}$ which are satisfied for instance by cluster categories, by generalized cluster categories and
Autor:
Yann Palu
Publikováno v:
Annales de l’institut Fourier. 58:2221-2248
Etant donne un objet amas-basculant T quelconque dans une categorie triangulee 2-Calabi-Yau sur un corps algebriquement clos (comme dans le cadre de Keller et Reiten), il est possible de definir, pour chaque objet L, une fraction rationnelle X(T,L),
Autor:
Yann Palu
Publikováno v:
Journal of Pure and Applied Algebra. (7):1438-1449
We compute the Grothendieck group of certain 2-Calabi–Yau triangulated categories appearing naturally in the study of the link between quiver representations and Fomin–Zelevinsky cluster algebras. In this setup, we also prove a generalization of
Publikováno v:
Journal of Algebra
Journal of Algebra, Elsevier, 2016
Journal of Algebra, Elsevier, 2016
We give a complete classification of all algebras appearing as endomorphism algebras of maximal rigid objects in standard 2-Calabi-Yau categories of finite type. Such categories are equivalent to certain orbit categories of derived categories of Dynk