Zobrazeno 1 - 10
of 85
pro vyhledávání: '"Yann Brenier"'
Autor:
Yann Brenier
Publikováno v:
Annales mathématiques du Québec. 46:195-206
Publikováno v:
Rendiconti Lincei - Matematica e Applicazioni. 32:97-108
Given a real function $f$, the rate function for the large deviations of the diffusion process of drift $\nabla f$ given by the Freidlin-Wentzell theorem coincides with the time integral of the energy dissipation for the gradient flow associated with
Autor:
Yann Brenier, Iván Moyano
Following Arnold's geometric interpretation, the Euler equations of an incompressible fluid moving in a domain D are known to be the optimality equation of the minimizing geodesic problem along the group of orientation and volume preserving diffeomor
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::40b977ab544840465e25545589fcc149
http://arxiv.org/abs/2104.14803
http://arxiv.org/abs/2104.14803
Autor:
Yann Brenier, Dmitry Vorotnikov
We suggest a new way of defining optimal transport of positive-semidefinite matrix-valued measures. It is inspired by a recent rendering of the incompressible Euler equations and related conservative systems as concave maximization problems. The main
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::79ffbfbf3c3ea3faab94409d51a33cc0
https://hal.archives-ouvertes.fr/hal-02389318
https://hal.archives-ouvertes.fr/hal-02389318
Autor:
Yann Brenier
Publikováno v:
Annales de la Faculté des sciences de Toulouse : Mathématiques. 26:831-846
Autor:
Yann Brenier
Publikováno v:
Variational Methods for Evolving Objects, L. Ambrosio, Y. Giga, P. Rybka and Y. Tonegawa, eds. (Tokyo: Mathematical Society of Japan, 2015)
In these lectures, we review a series of optimal transport (OT) problems of growing complexity. Surprisingly enough, in this seemingly narrow framework, we will encounter nonlinear PDEs of very different type, such as the Monge–Ampère équation, t
Autor:
Yann Brenier
Publikováno v:
Tunisian J. Math. 1, no. 4 (2019), 561-584
We establish the geometric origin of the nonlinear heat equation with arctangential nonlinearity: ∂tD=Δ(arctanD) by deriving it, together and in duality with the mean curvature flow equation, from the minimal surface equation in Minkowski space-ti
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::bceac64b9db4771ae7023f83d3be7f88
https://projecteuclid.org/euclid.tunis/1545102023
https://projecteuclid.org/euclid.tunis/1545102023
Autor:
Yann Brenier, Xianglong Duan
Publikováno v:
Calculus of Variations and Partial Differential Equations. 57
Optimal transport theory has been a powerful tool for the analysis of parabolic equations viewed as gradient flows of volume forms according to suitable transportation metrics. In this paper, we present an example of gradient flows for closed (d-1)-f
Autor:
Yann Brenier
Publikováno v:
Springer Proceedings in Mathematics & Statistics ISBN: 9783319915449
The Vlasov–Monge–Ampere model is a nonlinear correction of the classical Vlasov-Poisson model of classical gravitation. We show how it can be derived from the elementary model of a lattice subject to Brownian agitation.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::b138af7cc84e27e462c7851e5204e0f5
https://doi.org/10.1007/978-3-319-91545-6_18
https://doi.org/10.1007/978-3-319-91545-6_18
Autor:
Yann Brenier
Publikováno v:
New Trends and Results in Mathematical Description of Fluid Flows ISBN: 9783319943428
Various concepts of generalized and approximate solutions related to the mathematical theory of ideal incompressible fluids are discussed in relation with variational and stochastic approaches, in close connection with the least action principle.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::9d9dbc30c1421367c020e5d9d754b322
https://doi.org/10.1007/978-3-319-94343-5_2
https://doi.org/10.1007/978-3-319-94343-5_2