Zobrazeno 1 - 10
of 22
pro vyhledávání: '"Yanki Lekili"'
Autor:
Kazushi Ueda, Yanki Lekili
We prove homological mirror symmetry for Milnor fibers of simple singularities in dimensions greater than one, which are among the log Fano cases of Conjecture 1.5 in arXiv:1806.04345. The proof is based on a relation between matrix factorizations an
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3af2d90c6e90c95e9ab370b72cf37070
Autor:
Yanki Lekili, Alexander Polishchuk
Publikováno v:
Journal für die reine und angewandte Mathematik (Crelles Journal). 2019:151-189
We show that a certain moduli space of minimal A ∞ A_{\infty} -structures coincides with the modular compactification ℳ ¯ 1 , n ( n - 1 ) {\overline{\mathcal{M}}}_{1,n}(n-1) of ℳ 1 , n \mathcal{M}_{1,n} constructed by Smyth in [26]. In add
Autor:
Max Lipyanskiy, Yanki Lekili
Publikováno v:
Advances in Mathematics. 308:1340-1345
We show that the perfect derived categories of Iyama's $d$-dimensional Auslander algebras of type $\mathbb{A}$ are equivalent to the partially wrapped Fukaya categories of the $d$-fold symmetric product of the $2$-dimensional unit disk with finitely
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3f6fb6beed0fc586c34fec5e4cc5aada
http://arxiv.org/abs/1911.11719
http://arxiv.org/abs/1911.11719
Autor:
Alexander Polishchuk, Yanki Lekili
Publikováno v:
Lekili, Y & Polishchuk, A 2020, ' Homological mirror symmetry for higher-dimensional pairs of pants ', COMPOSITIO MATHEMATICA, vol. 156, no. 7, pp. 1310-1347 . https://doi.org/10.1112/S0010437X20007150
Using Auroux's description of Fukaya categories of symmetric products of punctured surfaces, we compute the partially wrapped Fukaya category of the complement of $k+1$ generic hyperplanes in $\mathbb{CP}^n$, for $k \geq n$, with respect to certain s
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9e66027622fb2526b2a241629e37692b
http://arxiv.org/abs/1811.04264
http://arxiv.org/abs/1811.04264
Autor:
Yanki Lekili, John B. Etnyre
Publikováno v:
Etnyre, J B & Lekili, Y 2018, ' Embedding all contact 3-manifolds in a fixed contact 5-manifold ', JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES .
In this note we observe that one can contact embed all contact 3-manifolds into a Stein fillable contact structure on the twisted $S^3$-bundle over $S^2$ and also into a unique overtwisted contact structure on $S^3\times S^2$. These results are prove
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::03f4d06028656723484840a211ba5cd1
https://kclpure.kcl.ac.uk/ws/files/97486804/embedding_JLMS_v2.pdf
https://kclpure.kcl.ac.uk/ws/files/97486804/embedding_JLMS_v2.pdf
Autor:
Alexander Polishchuk, Yanki Lekili
Publikováno v:
Lekili, Y & Polishchuk, A 2020, ' Derived equivalences of gentle algebras via Fukaya categories ', Mathematische Annalen, vol. 376, no. 1-2, pp. 187-225 . https://doi.org/10.1007/s00208-019-01894-5
Following the approach of Haiden-Katzarkov-Kontsevich arXiv:1409.8611, to any homologically smooth graded gentle algebra $A$ we associate a triple $(\Sigma_A, \Lambda_A; \eta_A)$, where $\Sigma_A$ is an oriented smooth surface with non-empty boundary
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2c1418b6d9f2a0936b1a53f6128bf71e
Autor:
James Pascaleff, Yanki Lekili
Publikováno v:
Lekili, Y & Pascaleff, J 2016, ' Floer cohomology of g-equivariant Lagrangian branes ', COMPOSITIO MATHEMATICA, vol. 152, pp. 1071-1110 . https://doi.org/10.1112/S0010437X1500771X
Building on Seidel and Solomon’s fundamental work [Symplectic cohomology and$q$-intersection numbers, Geom. Funct. Anal. 22 (2012), 443–477], we define the notion of a $\mathfrak{g}$-equivariant Lagrangian brane in an exact symplectic manifold $M
Autor:
Yanki Lekili, Alexander Polishchuk
Publikováno v:
Lekili, Y & Polishchuk, A 2017, ' Arithmetic mirror symmetry for genus 1 curves with n marked points ', Selecta Mathematica, vol. 23, no. 3 . https://doi.org/10.1007/s00029-016-0286-2
We establish a $\mathbb{Z}[[t_1,\ldots, t_n]]$-linear derived equivalence between the relative Fukaya category of the 2-torus with $n$ distinct marked points and the derived category of perfect complexes on the $n$-Tate curve. Specialising to $t_1= \
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c7f5f8b9b8dcb1127de7ffdba9f7b76e
https://kclpure.kcl.ac.uk/en/publications/86ef08a1-37d3-4213-b83f-7596558847a3
https://kclpure.kcl.ac.uk/en/publications/86ef08a1-37d3-4213-b83f-7596558847a3
Autor:
Tolga Etgü, Yanki Lekili
Publikováno v:
Etgu, T & Lekili, Y 2019, ' Fukaya categories of plumbings and multiplicative preprojective algebras ', Quantum Topology, vol. 10, no. 4, pp. 777-813 . https://doi.org/10.4171/QT/131
Quantum Topology
Quantum Topology
Given an arbitrary graph $\Gamma$ and non-negative integers $g_v$ for each vertex $v$ of $\Gamma$, let $X_\Gamma$ be the Weinstein $4$-manifold obtained by plumbing copies of $T^*\Sigma_v$ according to this graph, where $\Sigma_v$ is a surface of gen
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d733c1e31b9e7c540d5c81d4e655ec75
http://arxiv.org/abs/1703.04515
http://arxiv.org/abs/1703.04515