Zobrazeno 1 - 10
of 30 884
pro vyhledávání: '"Yang xin"'
Publikováno v:
Progress in Modern Biomedicine. Apr2023, Vol. 23 Issue 8, p1497-1501. 5p.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Multi-target regulatory mechanism of Yang Xin Tang − a traditional Chinese medicine against dementia
Autor:
Tung Yan Lo, Anthony Siu Lung Chan, Suet Ting Cheung, Lisa Ying Yung, Manton Man Hon Leung, Yung Hou Wong
Publikováno v:
Chinese Medicine, Vol 18, Iss 1, Pp 1-19 (2023)
Abstract Background Yang Xin Tang (YXT) is a traditional Chinese herbal preparation which has been reported to improve cognitive function and memory in patients with dementia. As the underlying mechanism of action of YXT has not been elucidated, we e
Externí odkaz:
https://doaj.org/article/b31ead40671b42468a6dd508092d63dd
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Jiang, Qiuling, Gu, Mingyao, Wang, Tianyi, Liu, Fangzhou, Yang, Xin, Zhang, Di, Wu, Zhijian, Wang, Ying, Wei, Li, Li, Hao
Electrochemical nitrate reduction reaction(NO3RR)offers a sustainable route for ambient ammonia synthesis. While metal-nitrogen-carbon (M-N-C) single-atom catalysts have emerged as promising candidates for NO3RR, the structure-activity relations unde
Externí odkaz:
http://arxiv.org/abs/2412.19615
Federated continual learning (FCL) allows each client to continually update its knowledge from task streams, enhancing the applicability of federated learning in real-world scenarios. However, FCL needs to address not only spatial data heterogeneity
Externí odkaz:
http://arxiv.org/abs/2412.18355
Scene flow methods based on deep learning have achieved impressive performance. However, current top-performing methods still struggle with ill-posed regions, such as extensive flat regions or occlusions, due to insufficient local evidence. In this p
Externí odkaz:
http://arxiv.org/abs/2412.17366
Recent approaches to VO have significantly improved performance by using deep networks to predict optical flow between video frames. However, existing methods still suffer from noisy and inconsistent flow matching, making it difficult to handle chall
Externí odkaz:
http://arxiv.org/abs/2412.16923
Autor:
Ma, Jun, Li, Feifei, Kim, Sumin, Asakereh, Reza, Le, Bao-Hiep, Nguyen-Vu, Dang-Khoa, Pfefferle, Alexander, Wei, Muxin, Gao, Ruochen, Lyu, Donghang, Yang, Songxiao, Purucker, Lennart, Marinov, Zdravko, Staring, Marius, Lu, Haisheng, Dao, Thuy Thanh, Ye, Xincheng, Li, Zhi, Brugnara, Gianluca, Vollmuth, Philipp, Foltyn-Dumitru, Martha, Cho, Jaeyoung, Mahmutoglu, Mustafa Ahmed, Bendszus, Martin, Pflüger, Irada, Rastogi, Aditya, Ni, Dong, Yang, Xin, Zhou, Guang-Quan, Wang, Kaini, Heller, Nicholas, Papanikolopoulos, Nikolaos, Weight, Christopher, Tong, Yubing, Udupa, Jayaram K, Patrick, Cahill J., Wang, Yaqi, Zhang, Yifan, Contijoch, Francisco, McVeigh, Elliot, Ye, Xin, He, Shucheng, Haase, Robert, Pinetz, Thomas, Radbruch, Alexander, Krause, Inga, Kobler, Erich, He, Jian, Tang, Yucheng, Yang, Haichun, Huo, Yuankai, Luo, Gongning, Kushibar, Kaisar, Amankulov, Jandos, Toleshbayev, Dias, Mukhamejan, Amangeldi, Egger, Jan, Pepe, Antonio, Gsaxner, Christina, Luijten, Gijs, Fujita, Shohei, Kikuchi, Tomohiro, Wiestler, Benedikt, Kirschke, Jan S., de la Rosa, Ezequiel, Bolelli, Federico, Lumetti, Luca, Grana, Costantino, Xie, Kunpeng, Wu, Guomin, Puladi, Behrus, Martín-Isla, Carlos, Lekadir, Karim, Campello, Victor M., Shao, Wei, Brisbane, Wayne, Jiang, Hongxu, Wei, Hao, Yuan, Wu, Li, Shuangle, Zhou, Yuyin, Wang, Bo
Promptable segmentation foundation models have emerged as a transformative approach to addressing the diverse needs in medical images, but most existing models require expensive computing, posing a big barrier to their adoption in clinical practice.
Externí odkaz:
http://arxiv.org/abs/2412.16085