Zobrazeno 1 - 10
of 1 419
pro vyhledávání: '"Yang Dachun"'
Global gradient estimates for Dirichlet problems of elliptic operators with a BMO antisymmetric part
Publikováno v:
Advances in Nonlinear Analysis, Vol 11, Iss 1, Pp 1496-1530 (2022)
Let n≥2n\ge 2 and Ω⊂Rn\Omega \subset {{\mathbb{R}}}^{n} be a bounded nontangentially accessible domain. In this article, the authors investigate (weighted) global gradient estimates for Dirichlet boundary value problems of second-order elliptic
Externí odkaz:
https://doaj.org/article/c949ca896a7a42029fa23bb9456e6a89
Publikováno v:
Advances in Nonlinear Analysis, Vol 11, Iss 1, Pp 535-579 (2021)
Let w be a Muckenhoupt A2(ℝn) weight and Ω a bounded Reifenberg flat domain in ℝn. Assume that p (·):Ω → (1, ∞) is a variable exponent satisfying the log-Hölder continuous condition. In this article, the authors investigate the weighted W
Externí odkaz:
https://doaj.org/article/6a440974c9924781a21e14cd312b303d
In this article, the authors determine the optimal regularity of characteristic functions in Besov-type and Triebel--Lizorkin-type spaces under restrictions on the measure of the $\delta$-neighborhoods of the boundary. In particular, the necessary an
Externí odkaz:
http://arxiv.org/abs/2411.19153
In this article, motivated by the regularity theory of the solutions of doubly nonlinear parabolic partial differential equations the authors introduce the off-diagonal two-weight version of the parabolic Muckenhoupt class with time lag. Then the aut
Externí odkaz:
http://arxiv.org/abs/2410.04483
Let $n \ge 2$ and $\Omega \subset \mathbb{R}^n$ be a bounded Lipschitz domain. In this article, we establish first-order global regularity estimates in the scale of BMO spaces on $\Omega$ for weak solutions to the second-order elliptic equation $\mat
Externí odkaz:
http://arxiv.org/abs/2409.19498
Publikováno v:
Analysis and Geometry in Metric Spaces, Vol 8, Iss 1, Pp 182-260 (2020)
Let (𝒳, d, μ) be a space of homogeneous type, in the sense of Coifman and Weiss, with the upper dimension ω. Assume that η ∈(0, 1) is the smoothness index of the wavelets on 𝒳 constructed by Auscher and Hytönen. In this article, via grand
Externí odkaz:
https://doaj.org/article/060ae5bef87f4d79b6464a237c73f5fe
In this article, via first establishing a weighted variant of the profound and far-reaching inequality obtained by A. Cohen, W. Dahmen, I. Daubechies, and R. DeVore in 2003, the authors give two new characterizations of Muckenhoupt weights. As an app
Externí odkaz:
http://arxiv.org/abs/2405.19790
We extend the affine inequalities on $\mathbb{R}^n$ for Sobolev functions in $W^{s,p}$ with $1 \leq p < n/s$ obtained recently by Haddad-Ludwig [16, 17] to the remaining range $p \geq n/s$. For each value of $s$, our results are stronger than affine
Externí odkaz:
http://arxiv.org/abs/2405.07329
This is the last one of three successive articles by the authors on matrix-weighted Besov-type and Triebel--Lizorkin-type spaces $\dot B^{s,\tau}_{p,q}(W)$ and $\dot F^{s,\tau}_{p,q}(W)$. In this article, the authors establish the molecular and the w
Externí odkaz:
http://arxiv.org/abs/2312.13549
This article is the second one of three successive articles of the authors on the matrix-weighted Besov-type and Triebel--Lizorkin-type spaces. In this article, we obtain the sharp boundedness of almost diagonal operators on matrix-weighted Besov-typ
Externí odkaz:
http://arxiv.org/abs/2312.13548