Zobrazeno 1 - 10
of 307
pro vyhledávání: '"Yang, Jianfu"'
Autor:
Yang, Jinge, Yang, Jianfu
In this paper, we investigate normalized solutions of a fractional Gross-Pitaevskii equation, which arises in an attractive Bose-Einstein condensation consisting of $N$ bosons moving by L\'{e}vy flights. We prove that there exists a positive constant
Externí odkaz:
http://arxiv.org/abs/2410.07510
Autor:
Zhu, Haiyan, Xiao, Yang, Xie, Tongjin, Yang, Mohan, Zhou, Xun, Xiao, Biao, Peng, Jingxuan, Yang, Jianfu
Publikováno v:
In Heliyon 15 September 2024 10(17)
Autor:
Xu, Ziyi, Yang, Jianfu
In this paper, we investigate the existence of multiple positive solutions to the following multi-critical Schr\"{o}dinger equation \begin{equation} \label{p} \begin{cases} -\Delta u+\lambda V(x)u=\mu |u|^{p-2}u+\sum\limits_{i=1}^{k}(|x|^{-(N-\alpha_
Externí odkaz:
http://arxiv.org/abs/2202.07117
In this paper, we investigate the existence of multiple solutions to the following multi-critical elliptic problem \begin{equation}\label{eq:0.1} \left\{\begin{aligned} -\Delta u & =\lambda |u|^{p-2}u +\sum_{i=1}^k(|x|^{-(N-\alpha_i)}*|u|^{2^*_i})|u|
Externí odkaz:
http://arxiv.org/abs/2201.10050
In this paper, we consider the existence of static solutions to the nonlinear Chern-Simons-Schr\"odinger system \begin{equation}\label{eqabstr} \left\{\begin{array}{ll} -ihD_0\Psi-h^2(D_1D_1+D_2D_2)\Psi+V\Psi=|\Psi|^{p-2}\Psi,\\ \partial_0A_1-\partia
Externí odkaz:
http://arxiv.org/abs/2007.02499
Autor:
Yu, Shuangyue, Huang, Tzu-Hao, Yang, Xiaolong, Jiao, Chunhai, Yang, Jianfu, Hu, Hang, Zhang, Sainan, Chen, Yue, Yi, Jingang, Su, Hao
High-performance actuators are crucial to enable mechanical versatility of lower-limb wearable robots, which are required to be lightweight, highly backdrivable, and with high bandwidth. State-of-the-art actuators, e.g., series elastic actuators (SEA
Externí odkaz:
http://arxiv.org/abs/2004.00467
Autor:
Yang, Jianfu, Yang, Jinge
In this paper, we deal with the existence and concentration of normalized solutions to the supercritical nonlinear Schr\"{o}dinger equation \begin{equation*} \left\{ \begin{array}{l} -\Delta u + V(x) u = \mu_q u + a|u|^q u \quad {\rm in}\quad \mathbb
Externí odkaz:
http://arxiv.org/abs/1905.09422
Autor:
Yang, Jianfu, Yang, Jinge
In this paper, we study the existence and concentration of normalized solutions to the supercritical nonlinear Schr\"{o}dinger equation \begin{equation*} \left\{ \begin{array}{l} -\Delta u + V(x) u = \mu_q u + a|u|^q u \quad {\rm in}\quad \mathbb{R}^
Externí odkaz:
http://arxiv.org/abs/1905.09428
Autor:
Xu Ziyi, Yang Jianfu
Publikováno v:
Advanced Nonlinear Studies, Vol 22, Iss 1, Pp 273-288 (2022)
In this article, we investigate the existence of multiple positive solutions to the following multi-critical Schrödinger equation: (0.1)−Δu+λV(x)u=μ∣u∣p−2u+∑i=1k(∣x∣−(N−αi)∗∣u∣2i∗)∣u∣2i∗−2uinRN,u∈H1(RN),\left\
Externí odkaz:
https://doaj.org/article/6e0041fe6e3c4801967ab2f160fa9d4c
In this paper, we consider the existence of multiple nodal solutions of the nonlinear Choquard equation \begin{equation*} \ \ \ \ (P)\ \ \ \ \begin{cases} -\Delta u+u=(|x|^{-1}\ast|u|^p)|u|^{p-2}u \ \ \ \text{in}\ \mathbb{R}^3, \ \ \ \ \\ u\in H^1(\m
Externí odkaz:
http://arxiv.org/abs/1704.04321