Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Yanal Wazaefi"'
Autor:
J-J. Grob, Johan Debayle, Bernard Fertil, Víctor González-Castro, C. Gaudy, Yanal Wazaefi, Mehdi Rahim
Publikováno v:
ICIP 2015 IEEE International Conference on Image Processing
ICIP 2015 IEEE International Conference on Image Processing, Sep 2015, Québec City, Canada. IEEE Xplore, IEEE Signal Processing Letters
ICIP
IEEE International Conference on Image Processing ICIP
ICIP 2015 IEEE International Conference on Image Processing, IEEE Signal Processing Society, Sep 2015, Québec City, Canada. pp.1722 à 1726, ⟨10.1109/ICIP.2015.7351095⟩
ICIP 2015 IEEE International Conference on Image Processing, Sep 2015, Québec City, Canada. IEEE Xplore, IEEE Signal Processing Letters
ICIP
IEEE International Conference on Image Processing ICIP
ICIP 2015 IEEE International Conference on Image Processing, IEEE Signal Processing Society, Sep 2015, Québec City, Canada. pp.1722 à 1726, ⟨10.1109/ICIP.2015.7351095⟩
ISBN:978-1-4799-8339-1; International audience; This paper introduces a method for characterizing and classifying skin lesions in dermoscopic color images with the goal of detecting which ones are melanoma (cancerous lesions). The images are describe
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e99ee58e97dded68edaff6e890eb6e51
https://hal-emse.ccsd.cnrs.fr/emse-01228085
https://hal-emse.ccsd.cnrs.fr/emse-01228085
Autor:
Caroline Gaudy-Marqueste, Jean-Jacques Grob, Johan Debayle, Víctor González-Castro, Yanal Wazaefi, Mehdi Rahim, Bernard Fertil
Publikováno v:
Twelfth International Conference on Quality Control by Artificial Vision
Twelfth International Conference on Quality Control by Artificial Vision, Le2i-Laboratoire Electronique, Informatique et Image, Jun 2015, Le Creusot, France. pp.[9534-3] ; doi:10.1117/12.2182592
Twelfth International Conference on Quality Control by Artificial Vision, Le2i-Laboratoire Electronique, Informatique et Image, Jun 2015, Le Creusot, France. pp.[9534-3] ; doi:10.1117/12.2182592
SPIE : Society of Photo-Optical Instrumentation Engineers; International audience; In this paper an automatic classification method of skin lesions from dermoscopic images is proposed. This method is based on color texture analysis based both on colo
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4cd1c732d9032688a1fa5c13decca432
https://hal-emse.ccsd.cnrs.fr/emse-01163688/document
https://hal-emse.ccsd.cnrs.fr/emse-01163688/document
Autor:
Yanal Wazaefi, Víctor González-Castro, Bernard Fertil, Johan Debayle, Jean-Jacques Grob, Caroline Gaudy-Marqueste, Mehdi Rahim
Publikováno v:
Journal of Electronic Imaging
Journal of Electronic Imaging, SPIE and IS&T, 2015, 24 (6), pp.061104. ⟨10.1117/1.JEI.24.6.061104⟩
Journal of Electronic Imaging, 2015, 24 (6), pp.061104. ⟨10.1117/1.JEI.24.6.061104⟩
Journal of Electronic Imaging, SPIE and IS&T, 2015, 24 (6), pp.061104. ⟨10.1117/1.JEI.24.6.061104⟩
Journal of Electronic Imaging, 2015, 24 (6), pp.061104. ⟨10.1117/1.JEI.24.6.061104⟩
art. 061104 Se proponen diferentes descriptores de textura para la clasificación automática de lesiones cutáneas a partir de imágenes dermoscópicas. Se basan en el análisis de textura de color obtenido de (1) morfología matemática del color (
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d11f2b57d979963371d2152db1c43373
https://hal-emse.ccsd.cnrs.fr/emse-01225076/document
https://hal-emse.ccsd.cnrs.fr/emse-01225076/document
Autor:
Luc Thomas, Jean-Jacques Grob, Caroline Gaudy-Marqueste, Josep Malvehy, Bernard Fertil, Raoul Triller, Marie-Aleth Richard, Sandrine Monestier, Y. Bruneu, M.-F. Avril, Giovanni Pellacani, Yanal Wazaefi
Publikováno v:
JAMA Dermatology. 153:279
Importance Understanding the contribution of the ugly duckling sign (a nevus that is obviously different from the others in a given individual) in intrapatient comparative analysis (IPCA) of nevi may help improve the detection of melanoma. Objectives
Publikováno v:
ISBI
Our goal was to model the ability of dermatologists to build consistent clusters of pigmented skin lesions in patients. A consensus clustering allows modeling the diversity of skin lesions in each patient as a result of the partitions proposed by nin
Autor:
Caroline Gaudy-Marqueste, Joseph Malvehy, Bernard Fertil, Giovanni Pellacani, Sandrine Monestier, Yanal Wazaefi, M.-F. Avril, Y. Bruneu, Jean-Jacques Grob, Marie-Aleth Richard, Luc Thomas, Raoul Triller
Publikováno v:
The Journal of investigative dermatology. 133(10)
Although nevi are highly polymorphous, it has been suggested that each individual is characterized by only a few dominant patterns of nevi. Therefore, a nevus that does not fit in with these patterns, the “ugly duckling” nevus, is suspicious. Our
Publikováno v:
IPTA
In this paper, we investigated to what extent the melanoma diagnosis can be impacted by an automatic system using dermoscopic images of pigmented skin lesions. Nine dermatologists were asked to give their diagnosis about 1097 dermoscopic images of sk
Autor:
J. Malvehy, L. Thomas, Caroline Gaudy-Marqueste, M.-F. Avril, Yanal Wazaefi, G. Pellacani, Marie Aleth Richard, Bernard Fertil, Jean-Jacques Grob, S. Hesse, R. Triller, Sandrine Monestier, Y. Bruneu
Publikováno v:
Annales de Dermatologie et de Vénéréologie. 139:B68-B69
Autor:
L. Thomas, Sandrine Monestier, Jean-Jacques Grob, Marie Aleth Richard, Yanal Wazaefi, J. Malvehy, R. Triller, Caroline Gaudy-Marqueste, M.-F. Avril, S. Hesse, Y. Bruneu, G. Pellacani, Bernard Fertil
Publikováno v:
Annales de Dermatologie et de Vénéréologie. 139:B272
Autor:
Y. Bruneu, Bernard Fertil, Joseph Malvehy, Giovanni Pellacani, Luc Thomas, Yanal Wazaefi, Sandrine Monestier, Jean-Jacques Grob, Raoul Triller, Marie-Françoise Avril, Caroline Gaudy-Marqueste
Publikováno v:
Journal of Clinical Oncology. 30:8578-8578
8578 Background: “Ugly duckling” (UD) sign is widely admitted as a major sign for melanoma (MM) detection. UD is based on the concept of intra-individual comparative analysis, which has never been validated. It is assumed that, in a given individ