Zobrazeno 1 - 10
of 149
pro vyhledávání: '"Yanagawa, Kohji"'
Recently, Morier-Genoud and Ovsienko introduced a $q$-deformation of rational numbers. More precisely, for an irreducible fraction $\frac{r}s>0$, they constructed coprime polynomials $\mathcal{R}_{\frac{r}s}(q),~ \mathcal{S}_{\frac{r}s}(q) \in {\math
Externí odkaz:
http://arxiv.org/abs/2403.08446
Autor:
Ren, Xin, Yanagawa, Kohji
For a partition $\lambda$ of $n$, the _Specht ideal_ $I_\lambda \subset K[x_1, \ldots, x_n]$ is the ideal generated by all Specht polynomials of shape $\lambda$. In their unpublished manuscript, Haiman and Woo showed that $I_\lambda$ is a radical ide
Externí odkaz:
http://arxiv.org/abs/2210.04762
Autor:
Shibata, Kosuke, Yanagawa, Kohji
Let $K$ be a field with ${\rm char}(K)=0$. For a partition $\lambda$ of $n \in {\mathbb N}$, let $I^{\rm Sp}_\lambda$ be the ideal of $R=K[x_1,\ldots,x_n]$ generated by all Specht polynomials of shape $\lambda$. These ideals have been studied from se
Externí odkaz:
http://arxiv.org/abs/2206.02701
Autor:
Ohsugi, Hidefumi, Yanagawa, Kohji
In this paper, we give the Gr\"obner fan and the state polytope of a Specht ideal $I_\lambda$ explicitly. In particular, we show that the state polytope of $I_\lambda$ for a partition $\lambda=(\lambda_1, \ldots, \lambda_m)$ is always a generalized p
Externí odkaz:
http://arxiv.org/abs/2201.05325
The Specht ideal of shape $\lambda$, where $\lambda$ is a partition, is the ideal generated by all Specht polynomials of shape $\lambda$. Haiman and Woo proved that these ideals are reduced and found their universal Gr\"obner bases. In this short not
Externí odkaz:
http://arxiv.org/abs/2111.05525
Autor:
Shibata, Kosuke, Yanagawa, Kohji
For a partition $\lambda$ of $n \in \mathbb{N}$, let $I^{\rm Sp}_\lambda$ be the ideal of $R=K[x_1,\ldots,x_n]$ generated by all Specht polynomials of shape $\lambda$. We assume that ${\rm char}(K)=0$. Then $R/I^{\rm Sp}_{(n-2,2)}$ is Gorenstein, and
Externí odkaz:
http://arxiv.org/abs/2010.06522
Autor:
Shibata, Kosuke, Yanagawa, Kohji
For a partition $\lambda$ of $n \in {\mathbb N}$, let $I^{\rm Sp}_\lambda$ be the ideal of $R=K[x_1,\ldots,x_n]$ generated by all Specht polynomials of shape $\lambda$. In the previous paper, the second author showed that if $R/I^{\rm Sp}_\lambda$ is
Externí odkaz:
http://arxiv.org/abs/2002.02221
Autor:
Shibata, Kosuke, Yanagawa, Kohji
Publikováno v:
In Journal of Algebra 15 November 2023 634:563-584
Autor:
Katthän, Lukas, Yanagawa, Kohji
Let P be a lattice polytope with $h^*$-vector $(1, h^*_1, h^*_2)$. In this note we show that if $h_2^* \leq h_1^*$, then $P$ is IDP. More generally, we show the corresponding statements for semi-standard graded Cohen-Macaulay domains over algebraical
Externí odkaz:
http://arxiv.org/abs/1907.07214
Autor:
Yanagawa, Kohji
For a partition $\lambda$ of $n$, let $I^{\rm Sp}_\lambda$ be the ideal of $R=K[x_1, \ldots, x_n]$ generated by all Specht polynomials of shape $\lambda$. We show that if $R/I^{\rm Sp}_\lambda$ is Cohen--Macaulay then $\lambda$ is of the form either
Externí odkaz:
http://arxiv.org/abs/1902.06577