Zobrazeno 1 - 10
of 64
pro vyhledávání: '"Yan-Xia Ren"'
Autor:
Yan-Xia Ren1,2 yxren@math.pku.edu.cn, Renming Song1,2 rsong@illinois.edu, Ting Yang1,2 yangt@bit.edu.cn
Publikováno v:
ALEA. Latin American Journal of Probability & Mathematical Statistics. 2022, Vol. 19 Issue 1, p163-208. 46p.
Publikováno v:
Advances in Applied Probability. 55:510-548
Using one-dimensional branching Brownian motion in a periodic environment, we give probabilistic proofs of the asymptotics and uniqueness of pulsating traveling waves of the Fisher–Kolmogorov–Petrovskii–Piskounov (F-KPP) equation in a periodic
Publikováno v:
Acta Mathematica Sinica, English Series. 38:487-498
Publikováno v:
Stochastic Processes and their Applications. 130:4358-4391
We consider a critical superprocess { X ; P μ } with general spatial motion and spatially dependent stable branching mechanism with lowest stable index γ 0 > 1 . We first show that, under some conditions, P μ ( | X t | ≠ 0 ) converges to 0 as t
In this paper we study the maximal position process of branching Brownian motion in random spatial environment. The random environment is given by a process $\xi = \left(\xi(x)\right)_{x\in\mathbb{R}}$ satisfying certain conditions. We show that the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::09262b949c1fa029ba17583cbf62be0b
Suppose $X=\{X_t, t\ge 0\}$ is a supercritical superprocess. Let $\phi$ be the non-negative eigenfunction of the mean semigroup of $X$ corresponding to the principal eigenvalue $\lambda>0$. Then $M_t(\phi)=e^{-\lambda t}\langle\phi, X_t\rangle, t\geq
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::46d6e55eb5ef118c389e8efb9e88cd01
http://arxiv.org/abs/2107.07097
http://arxiv.org/abs/2107.07097
Publikováno v:
Science China Mathematics. 62:1439-1462
In this paper, we provide a pathwise spine decomposition for multitype superdiffusions with non-local branching mechanisms under a martingale change of measure. As an application of this decomposition, we obtaina necessary and sufficient condition (c
Suppose that X is a subcritical superprocess. Under some asymptotic conditions on the mean semigroup of X , we prove the Yaglom limit of X exists and identify all quasi-stationary distributions of X .
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d54c151b275fbd2bf6481339be653b19
In this paper, we establish limit theorems for the supremum of the support, denoted by $M_t$, of a supercritical super-Brownian motion $\{X_t, t\ge0\}$ on $\mathbb{R}$. We prove that there exists an $m(t)$ such that $(X_t-m(t), M_t-m(t))$ converges i
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ec74a7da1e047be9aa413a57b5d827bb
Publikováno v:
Electron. J. Probab.
In this paper, we study the asymptotic behavior of a supercritical $(\xi ,\psi )$-superprocess $(X_{t})_{t\geq 0}$ whose underlying spatial motion $\xi $ is an Ornstein-Uhlenbeck process on $\mathbb{R} ^{d}$ with generator $L = \frac{1} {2}\sigma ^{2
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5c868f4df69bfd461db7b356ab30766b