Zobrazeno 1 - 10
of 49
pro vyhledávání: '"Yan, Fangchi"'
Autor:
Himonas, A. Alexandrou, Yan, Fangchi
This work studies the initial-boundary value problem for both the linear Schr\"odinger equation and the cubic nonlinear Schr\"odinger equation on the half-space in higher dimensions ($n\ge 2$). First, the forced linear problem is solved on the half-s
Externí odkaz:
http://arxiv.org/abs/2411.16610
Autor:
Yan, Fangchi, Zhang, Qingtian
We study the initial value problem of quasi-linear Hamiltonian mKdV equations. Our goal is to prove the global-in-time existence of a solution given sufficiently smooth, localized, and small initial data. To achieve this, we utilize the bootstrap arg
Externí odkaz:
http://arxiv.org/abs/2305.17821
Autor:
Himonas, A. Alexandrou, Yan, Fangchi
The Majda-Biello system models the interaction of Rossby waves. It consists of two coupled KdV equations one of which has a parameter $\alpha$ as coefficient of its dispersion. This work studies this system on the half line with Robin, Neumann, and D
Externí odkaz:
http://arxiv.org/abs/2212.07302
Autor:
Himonas, A. Alexanddrou, Yan, Fangchi
The initial-boundary value problem (ibvp) for the $m$-th order dispersion Korteweg-de Vries (KdV) equation on the half-line with rough data and solution in restricted Bourgain spaces is studied using the Fokas Unified Transform Method (UTM). Thus, th
Externí odkaz:
http://arxiv.org/abs/2204.01767
Autor:
Yan, Fangchi, Zhang, Qingtian
Publikováno v:
In Journal of Differential Equations 15 October 2024 406:1-86
Autor:
Yan, Fangchi, Zhang, Qingtian
In this paper, we consider a family of piecewise constant solutions of the quasi-geostrophic shallow-water (QGSW) equation. We derive the contour dynamics equation of the QGSW front, which is a nonlinear, nonlocal dispersive equation, and prove the g
Externí odkaz:
http://arxiv.org/abs/2203.01967
Autor:
Himonas, A. Alexandrou, Yan, Fangchi
Publikováno v:
In Journal of Mathematical Analysis and Applications 1 September 2024 537(1)
Autor:
Himonas, A. Alexandrou, Yan, Fangchi
Publikováno v:
In Applied Numerical Mathematics May 2024 199:32-58
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
A reaction-diffusion equation with power nonlinearity formulated either on the half-line or on the finite interval with nonzero boundary conditions is shown to be locally well-posed in the sense of Hadamard for data in Sobolev spaces. The result is e
Externí odkaz:
http://arxiv.org/abs/1810.05322