Zobrazeno 1 - 10
of 274
pro vyhledávání: '"Yamamoto, Hikaru"'
Autor:
Takahashi, Jin, Yamamoto, Hikaru
We study the solvability of the initial value problem for the semilinear heat equation $u_t-\Delta u=u^p$ in a Riemannian manifold $M$ with a nonnegative Radon measure $\mu$ on $M$ as initial data. We give sharp conditions on the local-in-time solvab
Externí odkaz:
http://arxiv.org/abs/2207.03731
Autor:
Takahashi, Jin, Yamamoto, Hikaru
We show the noninheritance of the completeness of the noncompact Yamabe flow. Our main theorem states the existence of a long time solution which is complete for each time and converges to an incomplete Riemannian metric. This shows the occurrence of
Externí odkaz:
http://arxiv.org/abs/2111.03222
Autor:
Kawai, Kotaro, Yamamoto, Hikaru
We can define the ``volume'' $V$ for Hermitian connections on a Hermitian complex line bundle over a Riemannian manifold $X$, which can be considered to be the ``mirror'' of the standard volume for submanifolds. This is called the Dirac-Born-Infeld (
Externí odkaz:
http://arxiv.org/abs/2103.13863
Autor:
Kawai, Kotaro, Yamamoto, Hikaru
The real Fourier-Mukai transform sends a section of a torus fibration to a connection over the total space of the dual torus fibration. By this method, Leung, Yau and Zaslow introduced deformed Hermitian Yang-Mills (dHYM) connections for K\"ahler man
Externí odkaz:
http://arxiv.org/abs/2101.03984
Autor:
Kawai, Kotaro, Yamamoto, Hikaru
A deformed Donaldson-Thomas connection for a manifold with a ${\rm Spin}(7)$-structure, which we call a ${\rm Spin}(7)$-dDT connection, is a Hermitian connection on a Hermitian line bundle $L$ over a manifold with a ${\rm Spin}(7)$-structure defined
Externí odkaz:
http://arxiv.org/abs/2101.03986
Autor:
Kawai, Kotaro, Yamamoto, Hikaru
A deformed Donaldson-Thomas (dDT) connection is a Hermitian connection of a Hermitian line bundle over a $G_2$-manifold $X$ satisfying a certain nonlinear PDE. This is considered to be the mirror of a (co)associative cycle in the context of mirror sy
Externí odkaz:
http://arxiv.org/abs/2004.00532
Autor:
Han, Xiaoli, Yamamoto, Hikaru
In this paper, we study the line bundle mean curvature flow defined by Jacob and Yau. The line bundle mean curvature flow is a kind of parabolic flows to obtain deformed Hermitian Yang-Mills metrics on a given K\"ahler manifold. The goal of this pape
Externí odkaz:
http://arxiv.org/abs/1904.02391
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Kawai, Kotaro, Yamamoto, Hikaru
Publikováno v:
In Advances in Mathematics 27 August 2022 405
Autor:
Takahashi, Jin, Yamamoto, Hikaru
We consider the heat equation with a superlinear absorption term $\partial_{t} u-\Delta u= -u^{p}$ in $\mathbb{R}^n$ and study the existence and nonexistence of nonnegative solutions with an $m$-dimensional time-dependent singular set, where $n-m\geq
Externí odkaz:
http://arxiv.org/abs/1712.06065