Zobrazeno 1 - 10
of 13
pro vyhledávání: '"Yagub Y. Mammadov"'
Autor:
Emin V. Guliyev, Yagub Y. Mammadov
Publikováno v:
Abstract and Applied Analysis, Vol 2010 (2010)
We consider the generalized shift operator, associated with the Dunkl operator Λα(f)(x)=(d/dx)f(x)+((2α+1)/x)((f(x)-f(-x))/2), α>-1/2. We study some embeddings into the Morrey space (D-Morrey space) Lp,λ,α, 0≤λ
Externí odkaz:
https://doaj.org/article/8dccb665090042699af7cdd8fae385b3
Publikováno v:
Journal of Pseudo-Differential Operators and Applications. 11:1699-1717
On the $${\mathbb {R}}^{d}$$ the Dunkl operators $$\big \{D_{k,j}\big \}_{j=1}^{d}$$ are the differential-difference operators associated with the reflection group $${\mathbb {Z}}_2^d$$ on $${\mathbb {R}}^{d}$$ . In this paper, in the setting $${\mat
Publikováno v:
Proceedings of the Institute of Mathematics and Mechanics,National Academy of Sciences of Azerbaijan. 4:130-144
Autor:
S.A. Hasanli, Yagub Y. Mammadov
Publikováno v:
International Journal of Apllied Mathematics. 31
Publikováno v:
Acta Mathematica Scientia. 33:1329-1346
In the article we consider the fractional maximal operatorM?, 0 ? ? < Q on any Carnot groupG (i.e., nilpotent stratified Lie group) in the generalized Morrey spacesMp,?(G), where Q is the homogeneous dimension ofG. We find the conditions on the pair
Autor:
Yagub Y. Mammadov, Vagif S. Guliyev
Publikováno v:
Analele Universitatii "Ovidius" Constanta - Seria Matematica. 20:189-212
In this paper we study the fractional maximal operator Mα, 0 ≤ α < Q and the Riesz potential operator ℑα, 0 < α < Q on the Heisenberg group in the modified Morrey spaces L͂p,λ(ℍn), where Q = 2n + 2 is the homogeneous dimension on ℍn. We
Autor:
Vagif S. Guliyev, Yagub Y. Mammadov
Publikováno v:
Integral Transforms and Special Functions. 21:629-639
WOS: 000280106600007 On the real line, the Dunkl operators are differential-difference operators associated with the reflection group Z(2) on R. In this paper, we obtain necessary and sufficient conditions on the parameters for the boundedness of the
Publikováno v:
Abstract and Applied Analysis, Vol 2010 (2010)
Abstr. Appl. Anal.
Abstr. Appl. Anal.
WOS: 000280762600001
We consider the generalized shift operator, associated with the Dunkl operator Lambda(alpha)(f)(x) = (d/dx)f(x) + ((2 alpha + 1)/x)((f(x) - f(-x))/2), alpha > -1/2. We study the boundedness of the Dunkltype fractional maxima
We consider the generalized shift operator, associated with the Dunkl operator Lambda(alpha)(f)(x) = (d/dx)f(x) + ((2 alpha + 1)/x)((f(x) - f(-x))/2), alpha > -1/2. We study the boundedness of the Dunkltype fractional maxima
Publikováno v:
Proceedings of Indian National Science Academy, Vol 44, Iss 2 (2014)
Boundedness of the fractional maximal operator in generalized morrey space on the Heisenberg group
We consider the Riesz potential operator I?, on the Heisenberg group Hn in generalized Morrey spaces Mp,?(Hn) and find conditions for the boundedness of I? as an operator from Mp,?1(Hn) to Mp,?2(Hn), 1 < p < ?, and from Mp,?1(Hn) to a weak Morrey spa
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0b2293de8a35226733f959fc22ad0d0a
https://hdl.handle.net/11480/842
https://hdl.handle.net/11480/842