Zobrazeno 1 - 10
of 570
pro vyhledávání: '"YOSHIDA, Shigeto"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Hasyim, Ammar A., Iyori, Mitsuhiro, Mizuno, Tetsushi, Abe, Yu-ichi, Yamagoshi, Iroha, Yusuf, Yenni, Syafira, Intan, Shahnaij, Mohammad, Sakamoto, Akihiko, Yamamoto, Yutaro, Mizukami, Hiroaki, Shida, Hisatoshi, Yoshida, Shigeto
Publikováno v:
In Parasitology International February 2023 92
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Hirakawa, Tsubasa, Tamaki, Toru, Raytchev, Bisser, Kaneda, Kazufumi, Koide, Tetsushi, Yoshida, Shigeto, Mieno, Hiroshi, Tanaka, Shinji
Colorectal endoscopy is important for the early detection and treatment of colorectal cancer and is used worldwide. A computer-aided diagnosis (CAD) system that provides an objective measure to endoscopists during colorectal endoscopic examinations w
Externí odkaz:
http://arxiv.org/abs/1612.05000
Autor:
Tamaki, Toru, Sonoyama, Shoji, Kurita, Takio, Hirakawa, Tsubasa, Raytchev, Bisser, Kaneda, Kazufumi, Koide, Tetsushi, Yoshida, Shigeto, Mieno, Hiroshi, Tanaka, Shinji, Chayama, Kazuaki
This paper proposes a method for domain adaptation that extends the maximum margin domain transfer (MMDT) proposed by Hoffman et al., by introducing L2 distance constraints between samples of different domains; thus, our method is denoted as MMDTL2.
Externí odkaz:
http://arxiv.org/abs/1611.02443
Autor:
Tamaki, Toru, Sonoyama, Shoji, Hirakawa, Tsubasa, Raytchev, Bisser, Kaneda, Kazufumi, Koide, Tetsushi, Yoshida, Shigeto, Mieno, Hiroshi, Tanaka, Shinji
In this paper we report results for recognizing colorectal NBI endoscopic images by using features extracted from convolutional neural network (CNN). In this comparative study, we extract features from different layers from different CNN models, and
Externí odkaz:
http://arxiv.org/abs/1608.06709
Autor:
Sonoyama, Shoji, Tamaki, Toru, Hirakawa, Tsubasa, Raytchev, Bisser, Kaneda, Kazufumi, Koide, Tetsushi, Yoshida, Shigeto, Mieno, Hiroshi, Tanaka, Shinji
In this paper we propose a method for transfer learning of endoscopic images. For transferring between features obtained from images taken by different (old and new) endoscopes, we extend the Max-Margin Domain Transfer (MMDT) proposed by Hoffman et a
Externí odkaz:
http://arxiv.org/abs/1608.06713
Autor:
Karismananda, Hasyim, Ammar Abdurrahman, Sakamoto, Akihiko, Yamagata, Kyouhei, Zainal, Kartika Hardianti, Suparman, Desi Dwirosalia Ningsih, Yustisia, Ika, Hardjo, Marhaen, Kadir, Syahrijuita, Iyori, Mitsuhiro, Yoshida, Shigeto, Yusuf, Yenni
Publikováno v:
Antibodies (2073-4468); Sep2024, Vol. 13 Issue 3, p72, 15p
Autor:
Mitani, Hironobu ⁎, Funakubo, Minako, Sato, Naoki, Murayama, Hiroki, Rached, Roberto Abi, Matsui, Nobutomo, Yoshida, Shigeto, Ishii, Takanori, Oyama, Naotsugu
Publikováno v:
In Journal of Cardiology October 2020 76(4):342-349
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.