Zobrazeno 1 - 10
of 25
pro vyhledávání: '"YO'AV RIECK"'
Autor:
Rachel Lehman, Yo’av Rieck
Publikováno v:
European Journal of Mathematics. 8:1-22
Autor:
Yo'av Rieck
D. B. Cohen, C. Goodman-Strauss, and the author proved that a hyperbolic group admits an "SA SFT" if and only if it has at most one end. This paper has two distinct parts: the first is a conversation explaining what an SA SFT is and how they may be o
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0bb39ab93ae5c853f25e5ec4a4bd3679
http://arxiv.org/abs/2202.00212
http://arxiv.org/abs/2202.00212
In this paper we consider two piecewise Riemannian metrics defined on the Culler-Vogtmann outer space which we call the entropy metric and the pressure metric. As a result of work of McMullen, these metrics can be seen as analogs of the Weil-Petersso
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7b051d0a98029e347874cbf9154f4466
Autor:
Tsuyoshi, KOBAYASHI, Yo'av, Rieck
Publikováno v:
Pacific Journal of Mathematics. 295:57-101
In a previous paper the authors defined the growth rate of the tunnel number of knots, an invariant that measures that asymptotic behavior of the tunnel number under connected sum. In this paper we calculate the growth rate of the tunnel number of m-
Publikováno v:
SoCG 2019-35th International Symposium on Computational Geometry
SoCG 2019-35th International Symposium on Computational Geometry, Jun 2019, Portland, United States
SoCG 2019-35th International Symposium on Computational Geometry, Jun 2019, Portland, United States
We prove that deciding if a diagram of the unknot can be untangled using at most $k$ Riedemeister moves (where $k$ is part of the input) is NP-hard. We also prove that several natural questions regarding links in the $3$-sphere are NP-hard, including
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::db3b2c227e31b5e9f3c9bd9b259fb980
http://arxiv.org/abs/1810.03502
http://arxiv.org/abs/1810.03502
Publikováno v:
ACM-SIAM Symposium on Discrete Algorithms
ACM-SIAM Symposium on Discrete Algorithms, Jan 2018, New Orleans, United States
Journal of the ACM (JACM)
Journal of the ACM (JACM), Association for Computing Machinery, 2020, 67 (4), pp.1-29. ⟨10.1145/3396593⟩
ACM-SIAM Symposium on Discrete Algorithms, Jan 2018, New Orleans, United States
Journal of the ACM (JACM)
Journal of the ACM (JACM), Association for Computing Machinery, 2020, 67 (4), pp.1-29. ⟨10.1145/3396593⟩
We prove that the problem of deciding whether a two- or three-dimensional simplicial complex embeds into R 3 is NP -hard. Our construction also shows that deciding whether a 3-manifold with boundary tori admits an S 3 filling is NP -hard. The former
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::fa9a227eccd5ef164f80ab923baa7fb0
https://hal.archives-ouvertes.fr/hal-01649774
https://hal.archives-ouvertes.fr/hal-01649774
Publikováno v:
Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::08debf75e2e5dccaebe817113ced5592
https://doi.org/10.1137/1.9781611975031.86
https://doi.org/10.1137/1.9781611975031.86
We prove that a hyperbolic group admits a strongly aperiodic subshift of finite type if and only if it has at most one end.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a88294f463aa8ae3f04fa1058b201719
http://arxiv.org/abs/1706.01387
http://arxiv.org/abs/1706.01387
Autor:
Yasushi Yamashita, Yo'av Rieck
Publikováno v:
Algebr. Geom. Topol. 13, no. 2 (2013), 927-958
We view closed orientable 3-manifolds as covers of S^3 branched over hyperbolic links. For a p-fold cover M \to S^3, branched over a hyperbolic link L, we assign the complexity p Vol(S^3 minus L) (where Vol is the hyperbolic volume). We define an inv
Autor:
Yasushi Yamashita, Yo'av Rieck
Publikováno v:
European Journal of Combinatorics. 31:903-907
In 1988 Fellows conjectured that if a finite, connected graph admits a finite planar emulator, then it admits a finite planar cover. We construct a finite planar emulator for K"4","5-4K"2. Archdeacon [Dan Archdeacon, Two graphs without planar covers,