Zobrazeno 1 - 10
of 67
pro vyhledávání: '"YILMAZ, HALİS"'
Autor:
Yilmaz, Halis1, Ozkul, Seda Arslan1, Aslan, Kubra Temel1, Unalan, Gulru Pemra Cobek1, Kaya, Cigdem Apaydin1 cigdem.apaydin@marmara.edu.tr
Publikováno v:
Konuralp Medical Journal / Konuralp Tip Dergisi. Oct2024, Vol. 16 Issue 3, p225-232. 8p.
Autor:
Yilmaz, Halis
The Hirota equation is an integrable higher order nonlinear Schr\"{o}dinger type equation which describes the propagation of ultrashort light pulses in optical fibers. We present a standard Darboux transformation for the Hirota equation and then cons
Externí odkaz:
http://arxiv.org/abs/2010.05452
Autor:
Yilmaz, Halis
Publikováno v:
In Wave Motion January 2024 124
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Unal, Medine, Yilmaz, Atakan, Yilmaz, Halis, Tasdemir, Gulay Yigitoglu, Uluturk, Mehmet, Kemanci, Aykut, Senol, Hande, Altan, Burak, Ozen, Mert, Seyit, Murat, Oskay, Alten, Turkcuer, Ibrahim
Publikováno v:
In Australasian Emergency Care December 2022 25(4):334-340
Autor:
Yilmaz, Halis
Publikováno v:
In Wave Motion August 2022 113
Publikováno v:
In Archives of Psychiatric Nursing October 2021 35(5):504-510
Autor:
Athorne, Chris, Yilmaz, Halis
We present a construction of a large class of Laplace invariants for linear hyperbolic partial differential operators of fairly general form and arbitrary order.
Comment: 14 pages, 0 figures
Comment: 14 pages, 0 figures
Externí odkaz:
http://arxiv.org/abs/1601.07051
Autor:
Nimmo, Jonathan J. C., Yilmaz, Halis
Publikováno v:
J. Phys. A: Math. Theor. 48 425202 (2015)
The Sasa-Satsuma equation is an integrable higher-order nonlinear Schr\"odinger equation. Higher-order and multicomponent generalisations of the nonlinear Schr\"odinger equation are important in various applications, e.g., in optics. One of these equ
Externí odkaz:
http://arxiv.org/abs/1502.07371
Autor:
Yilmaz, Halis
Publikováno v:
Journal of Nonlinear Mathematical Physics, 22:1, 32-46,2015
We study the Gerdjikov-Ivanov (GI) equation and present a standard Darboux transformation for it. The solution is given in terms of quasideterminants. Further, the parabolic, soliton and breather solutions of the GI equation are given as explicit exa
Externí odkaz:
http://arxiv.org/abs/1501.07634