Zobrazeno 1 - 10
of 308
pro vyhledávání: '"YANG Jiaxiang"'
Publikováno v:
Meikuang Anquan, Vol 54, Iss 3, Pp 33-39 (2023)
In order to explore the research trends of thermodynamic disaster in coal mine, based on the perspective of information visualization, 2 845 related papers published in CNKI database from 2002 to 2021 were used as data sources, and CiteSpace was used
Externí odkaz:
https://doaj.org/article/6374b201f21d4c4ea9d9120652024fd2
Publikováno v:
Dianzi Jishu Yingyong, Vol 44, Iss 8, Pp 82-85 (2018)
This article designed a data acquisition system for Time-of-Flight Secondary Ion Mass Spectrometer(TOF-SIMS). The system uses high speed Analog-to-Digital conversion(ADC) for sampling of analog signals. The timing controller is FPGA. The DDR3 SDRAM i
Externí odkaz:
https://doaj.org/article/70be08e402c0451e98df2fb775e33fdb
The zeroth-order general Randi\'{c} index $R^{0}_{a+1}$ of an $n$-vertices oriented graph $D$ is equal to the sum of $(d^{+}_{u_i})^{a}+(d^{-}_{u_j})^{a}$ over all arcs $u_iu_j$ of $D$, where we denote by $d^{+}_{u_i}$ the out-degree of the vertex $u
Externí odkaz:
http://arxiv.org/abs/2205.09955
Autor:
Xu, Jiqiang, Jin, Tao, Liu, Zepeng, Song, Jiaxuan, Li, Huilong, Liu, Jie, Yang, Jiaxiang, Zhang, Jing, Wang, Chengyuan
Publikováno v:
In Journal of Solid State Chemistry January 2025 341
Autor:
Shi, Qiusi, Zhao, Wenhao, Ou, Jiale, Yang, Longmei, Chen, Man, Feng, Yan, Meng, Xiangming, Yang, Jiaxiang, Wang, Chengyuan
Publikováno v:
In Dyes and Pigments January 2025 232
Autor:
Yang, Jiaxiang, Deng, Hanyuan
The zeroth-order general Randi\'{c} index $R^{0}_{a}$ of a digraph $D$ is the sum of $(d^{+}_{v})^{a}+(d^{-}_{w})^{a}$ over all arcs $vw$ of $D$, where $a$, $d^{+}_{v}$ and $d^{-}_{w}$ are an arbitrary real number, the out-degree of the vertex $v$ an
Externí odkaz:
http://arxiv.org/abs/2112.05378
Autor:
Yang, Jiaxiang, Deng, Hanyuan
Let $D=(V,A)$ be a digraphs without isolated vertices. The first Zagreb index of a digraph $D$ defined as a summation over all arcs, $M_1(D)=\frac{1}{2}\sum\limits_{uv\in A}(d^{+}_{u}+d^{-}_v)$, where $d^{+}_u$(resp. $d^{-}_u$) denotes the out-degree
Externí odkaz:
http://arxiv.org/abs/2111.10965
Autor:
Yang, Jiaxiang, Maulik, Granthana, He, Shan, Nag, Anindya, Deng, Shanggui, Afsarimanesh, Nasrin, Gao, Jingrong
Publikováno v:
In Sensors and Actuators: A. Physical 1 April 2024 368
Let $D=(V,A)$ be a digraphs without isolated vertices. A vertex-degree based invariant $I(D)$ related to a real function $\varphi$ of $D$ is defined as a summation over all arcs, $I(D) = \frac{1}{2}\sum_{uv\in A}{\varphi(d_u^+,d_v^-)}$, where $d_u^+$
Externí odkaz:
http://arxiv.org/abs/2104.14742
Autor:
Yang, Lan, Qin, Wenqiang, Wei, Xi, Liu, Rui, Yang, Jiaxiang, Wang, Zhi, Yan, Qingdi, Zhang, Yihao, Hu, Wei, Han, Xiao, Gao, Chenxu, Zhan, Jingjing, Gao, Baibai, Ge, Xiaoyang, Li, Fuguang, Yang, Zhaoen
Publikováno v:
In Plant Communications September 2024