Zobrazeno 1 - 10
of 107
pro vyhledávání: '"YAMAZAKI, Yohei"'
Autor:
Maeda, Masaya, Yamazaki, Yohei
We study the dynamics of solutions of nonlinear Schr\"odinger equation near unstable ground states. The existence of the local center stable manifold around ground states and the asymptotic stability for the solutions on the manifold is proved. The n
Externí odkaz:
http://arxiv.org/abs/2206.08156
Autor:
Hata, Keiichiro, Hamamura, Yuta, Noro, Hiroaki, Yamazaki, Yohei, Nagato, Shunsuke, Kanosue, Kazuyuki, Yanagiya, Toshio
Publikováno v:
Journal of Applied Biomechanics; Jun2024, Vol. 40 Issue 3, p192-200, 9p
Autor:
Maeda, Masaya, Yamazaki, Yohei
Publikováno v:
In Journal of Differential Equations 5 April 2024 387:256-298
Autor:
Yamazaki, Yohei
In this paper, we construct center stable manifolds around unstable line solitary waves of the Zakharov--Kuznetsov equation on two dimensional cylindrical spaces with $2\pi L$ period. In the previous paper, center stable manifolds around unstable lin
Externí odkaz:
http://arxiv.org/abs/2004.10088
Autor:
Yamazaki, Yohei
In this paper, we construct center stable manifolds of unstable line solitary waves for the Zakharov--Kuznetsov equation on $\mathbb{R}\times \mathbb{T}_L$ and show the orbital stability of the unstable line solitary waves on the center stable manifo
Externí odkaz:
http://arxiv.org/abs/1808.07315
Publikováno v:
In Gait & Posture June 2022 95:9-14
Autor:
Yamazaki, Yohei
We consider the orbital stability of solitons of the Kadomtsev--Petviashvili-I equation in $\mathbb{R} \times (\mathbb{R}/2\pi\mathbb{Z})$ which is one of a high dimensional generalization of the Korteweg--de Vries equation. Benjamin showed that the
Externí odkaz:
http://arxiv.org/abs/1710.10115
Autor:
Yamazaki, Yohei
In this paper, we consider the stability for line solitary waves of the two dimensional Zakharov-Kuznetsov equation on $\mathbb{R}\times\mathbb{T}_L$ which is one of a high dimensional generalization of Korteweg-de Vries equation , where $\mathbb{T}_
Externí odkaz:
http://arxiv.org/abs/1605.02584
Autor:
Yamazaki, Yohei
In this paper we consider the transverse instability for a nonlinear Schr\"odinger equation with a linear potential on $\mathbb{R} \times \mathbb{T}_L$, where $2\pi L$ is the period of the torus $\mathbb{T}_L$. Rose and Weinstein showed the existence
Externí odkaz:
http://arxiv.org/abs/1505.00421
Autor:
Suzuki, Kohei, Yamazaki, Yohei
Publikováno v:
Pacific Journal of Mathematics for Industry, 2015 7:2
Let $X$ be a compact metric space and $\mathcal M_X$ be the set of isometry classes of compact metric spaces $Y$ such that the Lipschitz distance $d_L(X,Y)$ is finite. We show that $(\mathcal M_X, d_L)$ is not separable when $X$ is a closed interval,
Externí odkaz:
http://arxiv.org/abs/1412.3491