Zobrazeno 1 - 10
of 16
pro vyhledávání: '"Xuening Qin"'
Publikováno v:
Frontiers in Immunology, Vol 14 (2023)
Giardia duodenalis is a zoonotic intestinal protozoan parasite that may cause host diarrhea and chronic gastroenteritis, resulting in great economic losses annually and representing a significant public health burden across the world. However, thus f
Externí odkaz:
https://doaj.org/article/5f31387dd3b54c34a893ea2928d0d2a1
Publikováno v:
PLoS Neglected Tropical Diseases, Vol 16, Iss 4, p e0010402 (2022)
Giardia duodenalis, the causative agent of giardiasis, is among the most important causes of waterborne diarrheal diseases around the world. Giardia infection may persist over extended periods with intestinal inflammation, although minimal. Cyclooxyg
Externí odkaz:
https://doaj.org/article/bcbc499d28534beb92a4a6c8a5fcde92
Autor:
Xuening Qin, Tien Huu Do, Jelle Hofman, Esther Rodrigo Bonet, Valerio Panzica La Manna, Nikos Deligiannis, Wilfried Philips
Publikováno v:
Remote Sensing, Vol 14, Iss 11, p 2613 (2022)
Urban air quality mapping has been widely applied in urban planning, air pollution control and personal air pollution exposure assessment. Urban air quality maps are traditionally derived using measurements from fixed monitoring stations. Due to high
Externí odkaz:
https://doaj.org/article/90d4718df6394cf991f2e5a38fa3d749
Autor:
Esther Rodrigo Bonet, Tien Do Huu, Xuening Qin, Jelle Hofman, Valerio Panzica La Manna, Wilfried Philips, Nikos Deligiannis
Publikováno v:
Vrije Universiteit Brussel
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::1688a76576b27187e8f367d654e47701
https://biblio.vub.ac.be/vubir/conditional-variational-graph-autoencoder-for-air-pollution-forecasting(48531867-eeea-43a9-ac89-bd402919f42b).html
https://biblio.vub.ac.be/vubir/conditional-variational-graph-autoencoder-for-air-pollution-forecasting(48531867-eeea-43a9-ac89-bd402919f42b).html
Autor:
Esther Rodrigo Bonet, Tien Huu Do, Xuening Qin, Jelle Hofman, Valerio Panzica La Manna, Wilfried Philips, Nikos Deligiannis
Publikováno v:
2022 30th European Signal Processing Conference (EUSIPCO).
Autor:
Tien Huu Do, Jelle Hofman, Nikos Deligiannis, Evaggelia Tsiligianni, Xuening Qin, Valerio Panzica La Manna, Wilfried Philips
Publikováno v:
IEEE Internet of Things Journal. 7:8943-8955
Internet-of-Things (IoT) technologies incorporate a large number of different sensing devices and communication technologies to collect a large amount of data for various applications. Smart cities employ IoT infrastructures to build services useful
Autor:
Esther Rodrigo Bonet, Tien Huu Do, Xuening Qin, Jelle Hofman, Valerio Panzica La Manna, Wilfried Philips, Nikos Deligiannis
Graph neural networks (GNNs) have proven their ability in modelling graph-structured data in diverse domains, including natural language processing and computer vision. However, like other deep learning models, the lack of explainability is becoming
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::527de0a15be8ef86d9610842ef88e2de
https://biblio.vub.ac.be/vubir/explaining-graph-neural-networks-with-topologyaware-node-selection-application-in-air-quality-inference(a869a6a8-357a-4568-bff6-907bbca038f7).html
https://biblio.vub.ac.be/vubir/explaining-graph-neural-networks-with-topologyaware-node-selection-application-in-air-quality-inference(a869a6a8-357a-4568-bff6-907bbca038f7).html
Autor:
Esther Rodrigo, Wilfried Philips, Valerio La Manna Panzica, Tien Huu Do, Nikos Deligiannis, Xuening Qin, Jelle Hofman
Publikováno v:
ICIAI
The spatial heterogeneity and temporal variability of air pollution in urban environments make air quality inference for fine-grained air pollution monitoring extremely challenging. Most of the existing work estimates the air quality using sparse mea
Autor:
Nikos Deligiannis, Tien Huu Do, Valerio Panzica La Manna, Esther Rodrigo, Jelle Hofman, Wilfried Philips, Xuening Qin, Martha E. Nikolaou
Publikováno v:
Pattern Recognition. ICPR International Workshops and Challenges ISBN: 9783030687793
ICPR Workshops (6)
ICPR Workshops (6)
Air quality monitoring in heterogeneous cities is challenging as a high resolution in both space and time is required to accurately assess population exposure. As regulatory monitoring networks are sparse due to high investment and maintenance costs,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6443a7f53c8eae127fc2e7e0128c9219
https://doi.org/10.1007/978-3-030-68780-9_14
https://doi.org/10.1007/978-3-030-68780-9_14
Spatiotemporal air quality inference of low-cost sensor data: Evidence from multiple sensor testbeds
Autor:
Jelle Hofman, Tien Huu Do, Xuening Qin, Esther Rodrigo Bonet, Wilfried Philips, Nikos Deligiannis, Valerio Panzica La Manna
Publikováno v:
Environmental Modelling & Software. 149:105306