Zobrazeno 1 - 10
of 65
pro vyhledávání: '"Xue, Yaohui"'
Smooth modules for affine Kac-Moody algebras have a prime importance for the quantum field theory as they correspond to the representations of the universal affine vertex algebras. But, very little is known about such modules beyond the category of p
Externí odkaz:
http://arxiv.org/abs/2404.03855
Autor:
Lu, Rencai, Xue, Yaohui
In this paper, we classify simple Harish-Chandra modules over simple generalized Witt algebras.
Externí odkaz:
http://arxiv.org/abs/2308.02822
Autor:
Xue, Yaohui, Zhao, Kaiming
Let $\delta=0$ or $\frac{1}{2}$. In this paper, we introduce the Fermion algebra $F(\delta)$ and the Fermion-Virasoro algebra $\mathcal S(\delta)$. They are infinite-dimensional Lie superalgebras. All simple smooth $F(\delta)$-modules, all simple wei
Externí odkaz:
http://arxiv.org/abs/2306.15250
Publikováno v:
In Journal of Algebra 15 November 2024 658:728-747
Publikováno v:
In Optics and Lasers in Engineering February 2025 185
Autor:
Lü, Rencai, Xue, Yaohui
Publikováno v:
In Journal of Algebra 15 July 2024 650:54-79
In this paper, we classify simple strong Harish-Chandra modules over the Lie superalgebra $W_{m,n}$ of vector fields on $\C^{m|n}$. Any such module is the unique simple submodule of some tensor module $F(P,V)$ for a simple weight module $P$ over the
Externí odkaz:
http://arxiv.org/abs/2106.04801
Autor:
Xue, Yaohui, Wang, Yan
In this paper, we study the tensor module $P\otimes M$ over the Witt superalgebra $W_{m,n}^+$ (resp. $W_{m,n}$), where $P$ is a simple module over the Weyl superalgebra $K_{m,n}^+$ (resp. $K_{m,n}$) and $M$ is simple weight module over the general li
Externí odkaz:
http://arxiv.org/abs/2102.05823
Autor:
Lü, Rencai, Xue, Yaohui
Let $A_{m,n}$ be the tensor product of the polynomial algebra in $m$ even variables and the exterior algebra in $n$ odd variables over the complex field $\C$, and the Witt superalgebra $W_{m,n}$ be the Lie superalgebra of superderivations of $A_{m,n}
Externí odkaz:
http://arxiv.org/abs/2009.12776
Autor:
Xue, Yaohui, Lü, Rencai
Let $W_n^+$ be the Lie algebra of the Lie algebra of vector fields on $\C^n$. In this paper, we classify all simple bounded weight $W_n^+$ modules. Any such module is isomorphic to the simple quotient of a tensor module $F(P,M)=P\otimes M$ for a simp
Externí odkaz:
http://arxiv.org/abs/2001.04204