Zobrazeno 1 - 10
of 290
pro vyhledávání: '"Xue, Qingying"'
In this paper, the authors consider the endpoint estimates for the maximal Calder\'on commutator defined by $$T_{\Omega,\,a}^*f(x)=\sup_{\epsilon>0}\Big|\int_{|x-y|>\epsilon}\frac{\Omega(x-y)}{|x-y|^{d+1}} \big(a(x)-a(y)\big)f(y)dy\Big|,$$ where $\Om
Externí odkaz:
http://arxiv.org/abs/2403.15758
Autor:
Tan, Jiawei, Xue, Qingying
Let $\Omega$ be a homogeneous function of degree zero and enjoy the vanishing condition on the unit sphere $\mathbb{S}^{n-1}(n\geq 2)$. Let $T_{\Omega}$ be the convolution singular integral operator with kernel ${\Omega(x)}{|x|^{-n}}$. In this paper,
Externí odkaz:
http://arxiv.org/abs/2403.05840
Autor:
Xue, Qingying, Yu, Jiali
The boundedness of the Marcinkiewicz integrals associated with Schr\"{o}dinger operator from the localized Morrey-Campanato space to the localized Morrey-Campanato-BLO space is established. Similar results for the Marcinkiewicz integrals associated w
Externí odkaz:
http://arxiv.org/abs/2402.01433
Autor:
Tan, Jiawei, Xue, Qingying
In this paper, the sharp quantitative weighted bounds for the iterated commutators of a class of multilinear operators were systematically studied. This class of operators contains multilinear Calder\'{o}n-Zygmund operators, multilinear Fourier integ
Externí odkaz:
http://arxiv.org/abs/2401.01714
Quantitative weighted estimates for the multilinear pseudo-differential operators in function spaces
Autor:
Tan, Jiawei, Xue, Qingying
In this paper, the weighted estimates for multilinear pseudo-differential operators were systematically studied in rearrangement invariant Banach and quasi-Banach spaces. These spaces contain the Lebesgue space, the classical Lorentz space and Marcin
Externí odkaz:
http://arxiv.org/abs/2312.08938
Publikováno v:
Math. Ann. 388 (2024), 3627-3755
In this paper, we develop a comprehensive weighted theory for a class of Banach-valued multilinear bounded oscillation operators on measure spaces, which merges multilinear Calder\'{o}n-Zygmund operators with a quantity of operators beyond the multil
Externí odkaz:
http://arxiv.org/abs/2210.09684
In this paper, the object of our investigation is the following Littlewood-Paley square function $g$ associated with the Schr\"odinger operator $L=-\Delta +V$ which is defined by: $g(f)(x)=\Big(\int_{0}^{\infty}\Big|\frac{d}{dt}e^{-tL}(f)(x)\Big|^2td
Externí odkaz:
http://arxiv.org/abs/2205.01964
Let $\Omega$ be homogeneous of degree zero, have vanishing moment of order one on the unit sphere $\mathbb {S}^{d-1}$($d\ge 2$). In this paper, our object of investigation is the following rough non-standard singular integral operator $$T_{\Omega,\,A
Externí odkaz:
http://arxiv.org/abs/2203.05249
Let $\Omega\in L^1{({\mathbb S^{n-1}})}$, be a function of homogeneous of degree zero, and $M_\Omega$ be the Hardy-Littlewood maximal operator associated with $\Omega$ defined by $M_\Omega(f)(x) = \sup_{r>0}\frac1{r^n}\int_{|x-y|
Externí odkaz:
http://arxiv.org/abs/2109.00167
Let $\Omega$ be a function of homogeneous of degree zero and vanish on the unit sphere $\mathbb {S}^n$. In this paper, we investigate the limiting weak-type behavior for singular integral operator $T_\Omega$ associated with rough kernel $\Omega$. We
Externí odkaz:
http://arxiv.org/abs/2106.14051