Zobrazeno 1 - 10
of 186
pro vyhledávání: '"Xu Xirong"'
Influence maximization (IM) is a crucial optimization task related to analyzing complex networks in the real world, such as social networks, disease propagation networks, and marketing networks. Publications to date about the IM problem focus mainly
Externí odkaz:
http://arxiv.org/abs/2405.09185
Influence Maximization problem has received significant attention in recent years due to its application in various do?mains such as product recommendation, public opinion dissemination, and disease propagation. This paper proposes a theoretical anal
Externí odkaz:
http://arxiv.org/abs/2306.13458
Publikováno v:
In Science of the Total Environment 1 December 2024 954
Publikováno v:
In Knowledge-Based Systems 19 July 2024 296
Astrocyte-mediated regulation of BLAWFS1 neurons alleviates risk-assessment deficits in DISC1-N mice
Autor:
Zhou, Xinyi, Xiao, Qian, Liu, Yaohui, Chen, Shuai, Xu, Xirong, Zhang, Zhigang, Hong, Yuchuan, Shao, Jie, Chen, Yuewen, Chen, Yu, Wang, Liping, Yang, Fan, Tu, Jie
Publikováno v:
In Neuron 3 July 2024 112(13):2197-2217
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
The twisted hypercube-like networks($THLNs$) contain several important hypercube variants. This paper is concerned with the fault-tolerant path-embedding of $n$-dimensional($n$-$D$) $THLNs$. Let $G_n$ be an $n$-$D$ $THLN$ and $F$ be a subset of $V(G_
Externí odkaz:
http://arxiv.org/abs/1906.05069
Autor:
Xu, Xirong1 (AUTHOR) xirongxu@dlut.edu.cn, Xu, Tao1 (AUTHOR), Wang, Ziming1 (AUTHOR), Li, Haochen1 (AUTHOR), Zhu, Li2 (AUTHOR), Wei, Xiaopeng1 (AUTHOR)
Publikováno v:
Neural Computing & Applications. Feb2024, Vol. 36 Issue 4, p2015-2028. 14p.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Wang, Jian, Xu, Xirong
The decycling number of a graph $G$ is the minimum number of vertices whose removal from $G$ results in an acyclic subgraph. It is known that determining the decycling number of a graph $G$ is equivalent to finding the maximum induced forests of $G$.
Externí odkaz:
http://arxiv.org/abs/1701.01953