Zobrazeno 1 - 10
of 239
pro vyhledávání: '"Xu Huali"'
Autor:
Xu, Huali, Liu, Yongxiang, Liu, Li, Zhi, Shuaifeng, Sun, Shuzhou, Liu, Tianpeng, Cheng, MingMing
Existing cross-domain few-shot learning (CDFSL) methods, which develop source-domain training strategies to enhance model transferability, face challenges with large-scale pre-trained models (LMs) due to inaccessible source data and training strategi
Externí odkaz:
http://arxiv.org/abs/2411.10070
Existing Cross-Domain Few-Shot Learning (CDFSL) methods require access to source domain data to train a model in the pre-training phase. However, due to increasing concerns about data privacy and the desire to reduce data transmission and training co
Externí odkaz:
http://arxiv.org/abs/2403.01966
While deep learning excels in computer vision tasks with abundant labeled data, its performance diminishes significantly in scenarios with limited labeled samples. To address this, Few-shot learning (FSL) enables models to perform the target tasks wi
Externí odkaz:
http://arxiv.org/abs/2303.08557
Publikováno v:
Published at ICIP 2023
The goal of Cross-Domain Few-Shot Classification (CDFSC) is to accurately classify a target dataset with limited labelled data by exploiting the knowledge of a richly labelled auxiliary dataset, despite the differences between the domains of the two
Externí odkaz:
http://arxiv.org/abs/2208.08015
In the image inpainting task, the ability to repair both high-frequency and low-frequency information in the missing regions has a substantial influence on the quality of the restored image. However, existing inpainting methods usually fail to consid
Externí odkaz:
http://arxiv.org/abs/2006.06196
It is very challenging for speech enhancement methods to achieves robust performance under both high signal-to-noise ratio (SNR) and low SNR simultaneously. In this paper, we propose a method that integrates an SNR-based teachers-student technique an
Externí odkaz:
http://arxiv.org/abs/2005.14441
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Xu, Huali, Li, Weili, Chen, Jiahao, Zhang, Piao, Rong, Siming, Tian, Jinping, Zhang, Yuqian, Li, Yanke, Cui, Zhenzhen, Zhang, Yuhu
Publikováno v:
In Clinics January-December 2023 78
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
In Journal of Functional Foods August 2022 95