Zobrazeno 1 - 10
of 1 528
pro vyhledávání: '"Xu, HaoRan"'
Vocabulary adaptation, which integrates new vocabulary into pre-trained language models (LMs), enables expansion to new languages and mitigates token over-fragmentation. However, existing approaches are limited by their reliance on heuristic or exter
Externí odkaz:
http://arxiv.org/abs/2410.09644
Autor:
Chen, Xiaoxue, Zheng, Jv, Huang, Hao, Xu, Haoran, Gu, Weihao, Chen, Kangliang, xiang, He, Gao, Huan-ang, Zhao, Hao, Zhou, Guyue, Zhang, Yaqin
The generation of high-quality 3D car assets is essential for various applications, including video games, autonomous driving, and virtual reality. Current 3D generation methods utilizing NeRF or 3D-GS as representations for 3D objects, generate a La
Externí odkaz:
http://arxiv.org/abs/2410.08181
Data availability across domains often follows a long-tail distribution: a few domains have abundant data, while most face dat . a scarcity. This imbalance poses challenges in training language models uniformly across all domains. In our study, we fo
Externí odkaz:
http://arxiv.org/abs/2410.04579
Large language models (LLMs) have achieved remarkable success across various NLP tasks, yet their focus has predominantly been on English due to English-centric pre-training and limited multilingual data. While some multilingual LLMs claim to support
Externí odkaz:
http://arxiv.org/abs/2410.03115
Autor:
Xu, Haoran, Liu, Ziqian, Fu, Rong, Su, Zhongling, Wang, Zerui, Cai, Zheng, Pei, Zhilin, Zhang, Xingcheng
With the evolution of large language models, traditional Transformer models become computationally demanding for lengthy sequences due to the quadratic growth in computation with respect to the sequence length. Mamba, emerging as a groundbreaking arc
Externí odkaz:
http://arxiv.org/abs/2408.03865
We study Online Linear Programming (OLP) with batching. The planning horizon is cut into $K$ batches, and the decisions on customers arriving within a batch can be delayed to the end of their associated batch. Compared with OLP without batching, the
Externí odkaz:
http://arxiv.org/abs/2408.00310
One important property of DIstribution Correction Estimation (DICE) methods is that the solution is the optimal stationary distribution ratio between the optimized and data collection policy. In this work, we show that DICE-based methods can be viewe
Externí odkaz:
http://arxiv.org/abs/2407.20109
We present a novel approach for synthesizing realistic novel views using Neural Radiance Fields (NeRF) with uncontrolled photos in the wild. While NeRF has shown impressive results in controlled settings, it struggles with transient objects commonly
Externí odkaz:
http://arxiv.org/abs/2407.10695
Fairness is an important topic for medical image analysis, driven by the challenge of unbalanced training data among diverse target groups and the societal demand for equitable medical quality. In response to this issue, our research adopts a data-dr
Externí odkaz:
http://arxiv.org/abs/2407.06250
Autor:
Liu, Xiaohong, Min, Xiongkuo, Zhai, Guangtao, Li, Chunyi, Kou, Tengchuan, Sun, Wei, Wu, Haoning, Gao, Yixuan, Cao, Yuqin, Zhang, Zicheng, Wu, Xiele, Timofte, Radu, Peng, Fei, Fu, Huiyuan, Ming, Anlong, Wang, Chuanming, Ma, Huadong, He, Shuai, Dou, Zifei, Chen, Shu, Zhang, Huacong, Xie, Haiyi, Wang, Chengwei, Chen, Baoying, Zeng, Jishen, Yang, Jianquan, Wang, Weigang, Fang, Xi, Lv, Xiaoxin, Yan, Jun, Zhi, Tianwu, Zhang, Yabin, Li, Yaohui, Li, Yang, Xu, Jingwen, Liu, Jianzhao, Liao, Yiting, Li, Junlin, Yu, Zihao, Lu, Yiting, Li, Xin, Motamednia, Hossein, Hosseini-Benvidi, S. Farhad, Guan, Fengbin, Mahmoudi-Aznaveh, Ahmad, Mansouri, Azadeh, Gankhuyag, Ganzorig, Yoon, Kihwan, Xu, Yifang, Fan, Haotian, Kong, Fangyuan, Zhao, Shiling, Dong, Weifeng, Yin, Haibing, Zhu, Li, Wang, Zhiling, Huang, Bingchen, Saha, Avinab, Mishra, Sandeep, Gupta, Shashank, Sureddi, Rajesh, Saha, Oindrila, Celona, Luigi, Bianco, Simone, Napoletano, Paolo, Schettini, Raimondo, Yang, Junfeng, Fu, Jing, Zhang, Wei, Cao, Wenzhi, Liu, Limei, Peng, Han, Yuan, Weijun, Li, Zhan, Cheng, Yihang, Deng, Yifan, Li, Haohui, Qu, Bowen, Li, Yao, Luo, Shuqing, Wang, Shunzhou, Gao, Wei, Lu, Zihao, Conde, Marcos V., Wang, Xinrui, Chen, Zhibo, Liao, Ruling, Ye, Yan, Wang, Qiulin, Li, Bing, Zhou, Zhaokun, Geng, Miao, Chen, Rui, Tao, Xin, Liang, Xiaoyu, Sun, Shangkun, Ma, Xingyuan, Li, Jiaze, Yang, Mengduo, Xu, Haoran, Zhou, Jie, Zhu, Shiding, Yu, Bohan, Chen, Pengfei, Xu, Xinrui, Shen, Jiabin, Duan, Zhichao, Asadi, Erfan, Liu, Jiahe, Yan, Qi, Qu, Youran, Zeng, Xiaohui, Wang, Lele, Liao, Renjie
This paper reports on the NTIRE 2024 Quality Assessment of AI-Generated Content Challenge, which will be held in conjunction with the New Trends in Image Restoration and Enhancement Workshop (NTIRE) at CVPR 2024. This challenge is to address a major
Externí odkaz:
http://arxiv.org/abs/2404.16687