Zobrazeno 1 - 10
of 48
pro vyhledávání: '"Xiyang Yang"'
Autor:
Jianqing Lan, Yingan Li, Shasha Pang, Guanrong Zhang, Dianpeng Wu, Cheng Yang, Juan Li, Junyu Lin, Xiyang Yang, Zheng Li, Hang Chu, Li Yan, Jin Zeng
Publikováno v:
Frontiers in Neuroscience, Vol 17 (2023)
PurposeThe stability of fixation is crucial for the development of visual function. In this study, we quantify the deviation of visual target during fixational and saccadic tasks using eye-tracking technology, reflecting the control ability and chara
Externí odkaz:
https://doaj.org/article/396c757fe5db4773a837319409012381
Autor:
Chang Li, An He, Yongzheng Guo, Xiyang Yang, Minghao Luo, Zhe Cheng, Longxiang Huang, Yong Xia, Suxin Luo
Publikováno v:
Scientific Reports, Vol 11, Iss 1, Pp 1-9 (2021)
Abstract O-GlcNAcylation, an energy-sensitive posttranslational modification, can regulate the activity of endothelial nitric oxide synthase (eNOS). Previous studies found that Thr866 is the key site for low-glucose-mediated regulation of eNOS O-GlcN
Externí odkaz:
https://doaj.org/article/43533d2a51c8416b91c95cafcb473062
Publikováno v:
Mathematics, Vol 10, Iss 23, p 4495 (2022)
Fuzzy information granulation transfers the time series analysis from the numerical platform to the granular platform, which enables us to study the time series at a different granularity. In previous studies, each fuzzy information granule in a gran
Externí odkaz:
https://doaj.org/article/321aa5385d4c4e92a3047f939d11d99d
Publikováno v:
Medicine; 11/1/2024, Vol. 103 Issue 44, p1-6, 6p
Publikováno v:
Journal of Intelligent & Fuzzy Systems. 44:4949-4962
The traditional Ordered Weighting Average (OWA) operator is suitable for aggregating numerical attributes. However, this method fails when the attribute values are given in a linguistic form. In this paper, a novel aggregating method named Entropy an
Publikováno v:
Journal of Intelligent & Fuzzy Systems. 44:1397-1411
In the existing short-term forecasting methods of time series, two challenges are faced: capture the associations of data and avoid cumulative errors. For tackling these challenges, the fuzzy information granule based model catches our attention. The
Publikováno v:
Information Sciences. 608:1591-1616
Publikováno v:
IEEE Transactions on Fuzzy Systems. 30:1599-1613
The existing long-term time series forecasting methods based on neural networks suffer from multiple limitations such as accumulated errors and diminishing temporal correlation, which compromise the prediction quality. To overcome these shortcomings,
Publikováno v:
Information Sciences. 586:563-595
Publikováno v:
Applied Soft Computing. 141:110284