Zobrazeno 1 - 10
of 31
pro vyhledávání: '"Xinhua Xiong"'
Autor:
Kunzhen Zhang, Xinhua Xiong
Publikováno v:
Journal of Applied Mathematics and Computation. 7:83-89
Autor:
Xinhua XIONG1
Publikováno v:
Proceedings of the Japan Academy, Series A: Mathematical Sciences. Oct2017, Vol. 93 Issue 8, p77-81. 5p.
Autor:
Xinhua XIONG1
Publikováno v:
Proceedings of the Japan Academy, Series A: Mathematical Sciences. Nov2016, Vol. 92 Issue 9, p117-120. 4p.
Autor:
Xinhua Xiong, William J. Keith
Publikováno v:
The Ramanujan Journal. 49:555-565
We generalise Euler’s partition theorem involving odd parts and distinct parts for all moduli and provide new companions to Rogers–Ramanujan–Andrews–Gordon identities related to this theorem.
Autor:
Ya Gao, Xinhua Xiong
Publikováno v:
International Journal of Theoretical and Applied Mathematics. 8:14
Autor:
Xinhua Xiong
Publikováno v:
International Journal of Number Theory. 12:1195-1208
Let [Formula: see text] denote the number of overpartitions of [Formula: see text]. In this paper, we will give a complete determination of [Formula: see text] modulo [Formula: see text] by relating it to some binary quadratic forms; this will genera
Autor:
Xinhua Xiong
Publikováno v:
The Ramanujan Journal. 42:429-442
Let \(\overline{p}(n)\) denote the number of overpartitions of n. Recently, Mahlburg showed that \(\overline{p}(n) \equiv 0 \pmod {64}\) and Kim showed that \(\overline{p}(n) \equiv 0 \pmod {128}\) for almost all integers n. In this paper, with the h
Application of Fine Management on Construction Unit Investment of Construction Project in University
Autor:
Xinhua Xiong, Haoming Peng
Publikováno v:
Advances in Intelligent Systems Research.
Autor:
Xinhua Xiong
Andrews, Dyson and Hickerson proved many interesting properties of coefficients for a Ramanujan's $q$-hypergeometric series by relating it to real quadratic field $\Q(\sqrt{6})$ and using the arithmetic of $\Q(\sqrt{6})$, hence solved a conjecture of
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::97a1f3302198c8506e6710970fa2ee88
Autor:
Xinhua Xiong
Publikováno v:
Communications of the Korean Mathematical Society. 26:551-555
In this note, we will give a short proof of an identity for cubicpartition function. 1. Introduction∑Let p ( n ) denote the number of the unrestricted partitions of n , de ned by 1n =0 p ( n ) q n =∏ 1n =011 q n . One of the celebrated results ab