Zobrazeno 1 - 10
of 83
pro vyhledávání: '"Xing-Ping Wu"'
Autor:
Dan-Ling Dai, Chu Xie, Lan-Yi Zhong, Shang-Xin Liu, Le-Le Zhang, Hua Zhang, Xing-Ping Wu, Zhou-Ming Wu, Kexin Kang, Yan Li, Ya-Meng Sun, Tian-Liang Xia, Chen-Song Zhang, Ao Zhang, Ming Shi, Cong Sun, Mei-Ling Chen, Ge-Xin Zhao, Guo-Long Bu, Yuan-Tao Liu, Kui-Yuan Huang, Zheng Zhao, Shu-Xin Li, Xiao-Yong Zhang, Yun-Fei Yuan, Shi-Jun Wen, Lingqiang Zhang, Bin-Kui Li, Qian Zhong, Mu-Sheng Zeng
Publikováno v:
Signal Transduction and Targeted Therapy, Vol 9, Iss 1, Pp 1-17 (2024)
Abstract Axis inhibition protein 1 (AXIN1), a scaffold protein interacting with various critical molecules, plays a vital role in determining cell fate. However, its impact on the antiviral innate immune response remains largely unknown. Here, we ide
Externí odkaz:
https://doaj.org/article/b3dcd05ee9ce45538c46a6f7a93e85d6
Publikováno v:
Electronic Journal of Differential Equations, Vol 2021, Iss 01,, Pp 1-14 (2021)
In this article, we consider the multiplicity of solutions for nonhomogeneous Schrodinger-Poisson systems under the Berestycki-Lions type conditions. With the aid of Ekeland's variational principle, the mountain pass theorem and a Pohozaev type id
Externí odkaz:
https://doaj.org/article/04bb9f98cc684625b12dceb2fc52abec
Homoclinic orbits for a class of second-order Hamiltonian systems with concave-convex nonlinearities
Publikováno v:
Electronic Journal of Qualitative Theory of Differential Equations, Vol 2018, Iss 6, Pp 1-18 (2018)
In this paper, we study the existence of multiple homoclinic solutions for the following second order Hamiltonian systems \begin{equation*} \ddot{u}(t)-L(t)u(t)+\nabla W(t,u(t))=0, \end{equation*} where $L(t)$ satisfies a boundedness assumption which
Externí odkaz:
https://doaj.org/article/42e55463b26b472e894c95bb7ce352bb
Publikováno v:
Electronic Journal of Differential Equations, Vol 2015, Iss 280,, Pp 1-12 (2015)
We study problems for the Kirchhoff equation $$\displaylines{ -\Big(a+b\int_{\Omega}|\nabla u|^2dx\Big)\Delta u =\nu u^3+ Q(x)u^{q},\quad \text{in }\Omega, \cr u=0, \quad \text{on }\partial\Omega, }$$ where $\Omega\subset \mathbb{R}^3$ is a bou
Externí odkaz:
https://doaj.org/article/f45c5303ee9c4ffc8f5d4fc86ad82b7c
Publikováno v:
Electronic Journal of Differential Equations, Vol 2015, Iss 47,, Pp 1-8 (2015)
In this article, we prove the existence of solutions for Kirchhoff type equations with Dirichlet boundary-value condition. We use the Mountain Pass Theorem in critical point theory, without the (PS) condition.
Externí odkaz:
https://doaj.org/article/acee3e0c1b1c430fb93c686695488370
Autor:
Guang-quan Li, Xing-gui Chen, Xing-ping Wu, Jing-dun Xie, Yong-ju Liang, Xiao-qin Zhao, Wei-qiang Chen, Li-wu Fu
Publikováno v:
PLoS ONE, Vol 7, Iss 11, p e48994 (2012)
Dicycloplatin, a new supramolecular platinum-based antitumor drug, has been approved by the State Food and Administration (SFDA) of China. In this study, we investigated the anticancer activity of dicycloplatin in cancer cells and signaling pathways
Externí odkaz:
https://doaj.org/article/796b04108c9e4f5d953bf9806586dc13
Publikováno v:
Complex Variables and Elliptic Equations. :1-24
Autor:
Li-Wu Fu, Ji-Hong Liu, Shao-Bo Liang, Xing-Ping Wu, Zhen Chen, Fang Wang, Xiao-Dong Su, Cheng-Cheng Deng, Xiao-Lin Luo
EGFR knock-down decreased the proliferation and sphere formation of SKOV3 cells.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2cd0d47d9ab1c3903a2393bff735a99a
https://doi.org/10.1158/0008-5472.22420122.v1
https://doi.org/10.1158/0008-5472.22420122.v1
Autor:
Li-Wu Fu, Ji-Hong Liu, Shao-Bo Liang, Xing-Ping Wu, Zhen Chen, Fang Wang, Xiao-Dong Su, Cheng-Cheng Deng, Xiao-Lin Luo
Effect of MED12 KO on tumorigenicity in HO8910 and SKOV3.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::116e8122c3d68ec7f1e802b05e278725
https://doi.org/10.1158/0008-5472.22420113.v1
https://doi.org/10.1158/0008-5472.22420113.v1
Publikováno v:
Qualitative Theory of Dynamical Systems. 22
Note: Please see pdf for full abstract with equations. In this paper, we investigate the sign-changing solutions to the following Schrödinger-Poisson system −∆u + V (x)u + λφ(x)u = f (u), x ∈ R3 , −∆φ = u2 , x ∈ R3 , where λ > 0 is a