Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Xing, Naili"'
Autor:
Zhao, Zhanhao, Cai, Shaofeng, Gao, Haotian, Pan, Hexiang, Xiang, Siqi, Xing, Naili, Chen, Gang, Ooi, Beng Chin, Shen, Yanyan, Wu, Yuncheng, Zhang, Meihui
Databases are increasingly embracing AI to provide autonomous system optimization and intelligent in-database analytics, aiming to relieve end-user burdens across various industry sectors. Nonetheless, most existing approaches fail to account for the
Externí odkaz:
http://arxiv.org/abs/2408.03013
Autor:
Ooi, Beng Chin, Cai, Shaofeng, Chen, Gang, Shen, Yanyan, Tan, Kian-Lee, Wu, Yuncheng, Xiao, Xiaokui, Xing, Naili, Yue, Cong, Zeng, Lingze, Zhang, Meihui, Zhao, Zhanhao
Publikováno v:
SCIENCE CHINA Information Sciences 67, 10 (2024)
In the wake of rapid advancements in artificial intelligence (AI), we stand on the brink of a transformative leap in data systems. The imminent fusion of AI and DB (AIxDB) promises a new generation of data systems, which will relieve the burden on en
Externí odkaz:
http://arxiv.org/abs/2405.03924
Autor:
Zeng, Lingze, Xing, Naili, Cai, Shaofeng, Chen, Gang, Ooi, Beng Chin, Pei, Jian, Wu, Yuncheng
Relational database management systems (RDBMS) are widely used for the storage of structured data. To derive insights beyond statistical aggregation, we typically have to extract specific subdatasets from the database using conventional database oper
Externí odkaz:
http://arxiv.org/abs/2405.00568
The increasing demand for tabular data analysis calls for transitioning from manual architecture design to Neural Architecture Search (NAS). This transition demands an efficient and responsive anytime NAS approach that is capable of returning current
Externí odkaz:
http://arxiv.org/abs/2403.10318
Autor:
Xing, Naili, Yeung, Sai Ho, Cai, Chenghao, Ng, Teck Khim, Wang, Wei, Yang, Kaiyuan, Yang, Nan, Zhang, Meihui, Chen, Gang, Ooi, Beng Chin
Deep learning has achieved great success in a wide spectrum of multimedia applications such as image classification, natural language processing and multimodal data analysis. Recent years have seen the development of many deep learning frameworks tha
Externí odkaz:
http://arxiv.org/abs/2108.02572
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.