Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Xin Jia Li"'
Publikováno v:
Jisuanji kexue, Vol 48, Iss 11, Pp 133-141 (2021)
Focusing on the problems of poor scalability,the random selection of primary nodes,and high network overhead in the practical-Byzantine-fault-tolerant consensus algorithm,this paper proposes a Byzantine-fault-tolerant consensus algorithm based on cre
Externí odkaz:
https://doaj.org/article/82116cb9e6f14c25b33baaa263c6e3a4
Publikováno v:
Jisuanji kexue, Vol 48, Iss 9, Pp 330-336 (2021)
In order to solve the privacy and data integrity problems of shared electronic medical records,this paper proposes a red-black tree-based shared electronic medical records data integrity verification scheme based on the parallel blockchain architectu
Externí odkaz:
https://doaj.org/article/e3ca64789d094689bd321f0c1f6c7e29
Publikováno v:
2022 6th International Conference on Education and Multimedia Technology.
Publikováno v:
Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering ISBN: 9783030678708
ADHIP (1)
ADHIP (1)
In view of the fact that the monitoring data in large-scale distribution network has the characteristics of quantifiable, real-time, dynamic and so on, and the data storage capacity is insufficient, this paper puts forward the design of the real-time
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::31ce739dd6c18d12916fc89dbaef7a79
https://doi.org/10.1007/978-3-030-67871-5_12
https://doi.org/10.1007/978-3-030-67871-5_12
Publikováno v:
Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering ISBN: 9783030190859
ADHIP
ADHIP
The parallel prediction model of big data with traditional power load has a low prediction accuracy in different working conditions, so the parallel prediction model of big data for short-term power load is designed. The short-term power load forecas
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::0502edef6ad6712fb3585a6548aeb0e3
https://doi.org/10.1007/978-3-030-19086-6_14
https://doi.org/10.1007/978-3-030-19086-6_14