Zobrazeno 1 - 10
of 35
pro vyhledávání: '"Xie, Rulong"'
Autor:
Wang, Hailian, Xie, Rulong
Let $(X,d,\mu)$ denotes non-homogeneous metric measure space satisfying geometrically doubling and the upper doubling measure condition. In this paper, the boundedness in Lebesgue spaces for two kinds of commutators, which are iterated commutators an
Externí odkaz:
http://arxiv.org/abs/2110.13312
Autor:
Xie, Rulong
Let $F: \mathbb{R}^{n}\rightarrow [0,+\infty) $ be a convex function of class $C^{2}( \mathbb{R}^{n}\backslash\{0\})$ which is even and positively homogeneous of degree 1, and its polar $F^{0}$ represents a Finsler metric on $\mathbb{R}^{n}$. The ani
Externí odkaz:
http://arxiv.org/abs/2005.06513
Autor:
Wang Hailian, Xie Rulong
Publikováno v:
Open Mathematics, Vol 19, Iss 1, Pp 1779-1800 (2021)
Let (X,d,μ)\left(X,d,\mu ) denote nonhomogeneous metric measure space satisfying geometrically doubling and the upper doubling measure conditions. In this paper, the boundedness in Lebesgue spaces for two kinds of commutators, which are iterated com
Externí odkaz:
https://doaj.org/article/781ac0ffa17f423ba28eb069106bd69b
Let $(X,d,\mu)$ be a non-homogeneous metric measure space satisfying both the geometrically doubling and the upper doubling measure conditions. In this paper, the boundedness of multilinear fractional integral operator in this setting is proved. Via
Externí odkaz:
http://arxiv.org/abs/1602.05742
Autor:
Xie, Rulong, Gong, Huajun
Let $Q_{N}$ be $N$-anisotropic Laplacian operator, which contains the ordinary Laplacian operator, $N$-Laplacian operator and anisotropic Laplacian operator. In this paper, we firstly obtain the properties for $Q_{N}$, which contain the weak maximal
Externí odkaz:
http://arxiv.org/abs/1404.6611
Autor:
Xie, Rulong, Shu, Lisheng
In this paper, the fractional integral operator on non-homogeneous metric measure spaces is introduced, which contains the classic fractional integral operator, fractional integral with non-doubling measures and fractional integral with fractional ke
Externí odkaz:
http://arxiv.org/abs/1308.5483
Publikováno v:
Taiwanese J. Math., 2015,19: 703-723
Let $(X,d,\mu)$ be a metric measure space satisfying both the geometrically doubling and the upper doubling measure conditions, which is called non-homogeneous metric measure space. In this paper, via a sharp maximal operator, the boundedness of comm
Externí odkaz:
http://arxiv.org/abs/1307.5261
Autor:
Wang, Hailian1 (AUTHOR), Xie, Rulong1,2 (AUTHOR) xierl@mail.ustc.edu.cn
Publikováno v:
Journal of Inequalities & Applications. 4/25/2022, Vol. 2022 Issue 1, p1-21. 21p.
Autor:
Wang, Wen1 (AUTHOR) wwen2014@mail.ustc.edu.cn, Xie, Rulong2 (AUTHOR) xierl@ustc.edu.cn, Zhang, Pan3,4 (AUTHOR) panzhang20100@ahu.edu.cn
Publikováno v:
Chinese Annals of Mathematics. Jul2021, Vol. 42 Issue 4, p529-550. 22p.
Publikováno v:
Taiwanese Journal of Mathematics, 2015 Jun 01. 19(3), 703-723.
Externí odkaz:
https://www.jstor.org/stable/taiwjmath.19.3.703