Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Xiaonian Long"'
A Mixed Finite Element Method for Stationary Magneto-Heat Coupling System with Variable Coefficients
Publikováno v:
Entropy, Vol 24, Iss 7, p 912 (2022)
In this article, a mixed finite element method for thermally coupled, stationary incompressible MHD problems with physical parameters dependent on temperature in the Lipschitz domain is considered. Due to the variable coefficients of the MHD model, t
Externí odkaz:
https://doaj.org/article/8e666f3062e04c4a80a9fee0e85f5c22
Autor:
Xiaonian Long, Qianqian Ding
Publikováno v:
Applied Numerical Mathematics. 182:176-195
Autor:
Xiaonian Long1 longxiaonian@lsec.cc.ac.cn, Qianqian Ding2 dingqianqian@lsec.cc.ac.cn
Publikováno v:
Journal of Computational Mathematics. 2022, Vol. 40 Issue 3, p356-374. 19p.
Publikováno v:
Numerical Methods for Partial Differential Equations. 39:1449-1477
Autor:
Xiaonian Long, Qianqian Ding
Publikováno v:
Journal of Scientific Computing. 96
Publikováno v:
ESAIM: Mathematical Modelling and Numerical Analysis. 56:969-1005
In this paper, we study a fully discrete finite element scheme of thermally coupled incompressible magnetohydrodynamic with temperature-dependent coefficients in Lipschitz domain. The variable coefficients in the MHD system and possible nonconvex dom
Publikováno v:
Applied Numerical Mathematics. 157:522-543
In this paper, we consider the nonstationary magnetohydrodynamic coupled heat equation through the well-known Boussinesq approximation. The Crank-Nicolson extrapolation scheme is used for time derivative terms, and the mixed finite method is used for
Publikováno v:
Journal of Computational and Applied Mathematics. 419:114728
Publikováno v:
Journal of Scientific Computing. 88
We investigate a fully discrete finite element scheme for the three-dimensional incompressible magnetohydrodynamic problem based on magnetic vector potential formulation that was introduced in Hiptmair et al. (MMMAS 28:659–695, 2018). The formulati