Zobrazeno 1 - 10
of 11
pro vyhledávání: '"Xiaogao Yang"'
Autor:
Youyan Liu, Chuanyan Zhao, Xingming Liu, Yapeng Chang, Hong Wang, Jianhong Yang, Xiaogao Yang, Yang Wei
Publikováno v:
Ecological Indicators, Vol 132, Iss , Pp 108295- (2021)
Evaluating the ecological security status of National Nature Reserve (NNR) has become a critical issue because NNR plays important roles in environmental protection and socio-economic sustainable development. This study employed the Baishuijiang Nati
Externí odkaz:
https://doaj.org/article/36d42e42b6054795b16db3346b227576
Autor:
Xiaogao Yang1 yxg_568@126.com, Deqiong Ding2 ddqshe2010@163.com, Xiaozhong Zhang3 2843358292@qq.com
Publikováno v:
IAENG International Journal of Applied Mathematics. Jun2023, Vol. 53 Issue 2, p678-683. 6p.
Publikováno v:
IAENG International Journal of Applied Mathematics. Dec2021, Vol. 51 Issue 4, p1003-1008. 6p.
Publikováno v:
Engineering Letters. Sep2020, Vol. 28 Issue 3, p827-832. 6p.
Autor:
Youyan Liu, Chuan Wang, Hong Wang, Yapeng Chang, Xiaogao Yang, Fei Zang, Xingming Liu, Chuanyan Zhao
Publikováno v:
Journal for Nature Conservation. 73:126394
Autor:
Marya Kanwal, Waheed Ur Rehman, Xiaogao Yang, Xinhua Wang, Yingchun Chen, Yiqi Cheng, Zia Ullah
Publikováno v:
Industrial Lubrication and Tribology. 73:316-324
Purpose The purpose of this paper is to improve static/dynamic characteristics of active-controlled hydrostatic journal bearing by using fractional order control techniques and optimizing algorithms. Design/methodology/approach Active lubrication has
Publikováno v:
Neurocomputing. 378:79-97
Due to the rapid development of multimedia technology, a large number of unlabelled data with high dimensionality need to be processed. The high dimensionality of data not only increases the computation burden of computer hardware, but also hinders a
Publikováno v:
Signal Processing. 205:108892
Publikováno v:
Applied Intelligence. 50:1379-1397
With the explosion of unlabelled and high-dimensional data, unsupervised feature selection has become an critical and challenging problem in machine learning. Recently, data representation based model has been successfully deployed for unsupervised f