Zobrazeno 1 - 10
of 20
pro vyhledávání: '"Xiaodong, Kuang"'
Autor:
Yiqian Wen, Shiyi Deng, Binhui Wang, Fan Zhang, Tao Luo, Haibin Kuang, Xiaodong Kuang, Yangyang Yuan, Jian Huang, Dalei Zhang
Publikováno v:
Ecotoxicology and Environmental Safety, Vol 278, Iss , Pp 116439- (2024)
Nanoplastic contamination has been of intense concern by virtue of the potential threat to human and ecosystem health. Animal experiments have indicated that exposure to nanoplastics (NPs) can deposit in the liver and contribute to hepatic injury. To
Externí odkaz:
https://doaj.org/article/5e88a21e9b5f4b53985e143826e090cc
Autor:
Zhangbei Sun, Yiqian Wen, Fan Zhang, Zhendong Fu, Yangyang Yuan, Haibin Kuang, Xiaodong Kuang, Jian Huang, Liping Zheng, Dalei Zhang
Publikováno v:
Ecotoxicology and Environmental Safety, Vol 255, Iss , Pp 114796- (2023)
Plastic particle pollution poses an emerging threat to ecological and human health. Laboratory animal studies have illustrated that nano-sized plastics can accumulate in the testis and cause testosterone deficiency and spermatogenic impairment. In th
Externí odkaz:
https://doaj.org/article/8a18f140aac9404287f716c81ec50c54
Autor:
Jie Zhao, Wenjing Geng, Kefei Wan, Kailei Guo, Fengjun Xi, Xiangqun Xu, Xiujuan Xiong, Xu Huang, Jiayi Liu, Xiaodong Kuang
Publikováno v:
Journal of International Medical Research, Vol 49 (2021)
Objective To explore the role of lipoxin A4 (LXA4) on inflammasome and inflammatory activity in macrophages activated by Porphyromonas gingivalis lipopolysaccharide (PgLPS) one of the major causative agents of chronic periodontitis. Methods The mouse
Externí odkaz:
https://doaj.org/article/a815bd2dfa5640c58333a025ffc7e70e
Publikováno v:
IEEE Photonics Journal, Vol 10, Iss 2, Pp 1-15 (2018)
In this paper, we propose a deep learning method for single infrared image optical noise removal. With a fully convolutional neural network, it is able to eliminate the optical noise in single infrared image. Our architecture consists of two networks
Externí odkaz:
https://doaj.org/article/c49d7400659d4098b602c81097cd0683
Publikováno v:
IEEE Photonics Journal, Vol 9, Iss 4, Pp 1-13 (2017)
In this paper, we present a deep learning method for single infrared image stripe noise removal. Our method is denoted as a deep convolutional neural network (CNN) that takes the noisy image as the input and outputs the clean image. The deep CNN cons
Externí odkaz:
https://doaj.org/article/e81ce4070b8c4a7197b340d26209ae07
Autor:
En Cao, Jun Xu, Yuanqi Gong, Jingjing Yuan, Anbang Chen, Jiayi Liu, Yunfei Fan, Xiangyang Fan, Xiaodong Kuang
Publikováno v:
International Journal of Chronic Obstructive Pulmonary Disease.
En Cao,1,* Jun Xu,1,* Yuanqi Gong,2,* Jingjing Yuan,3 Anbang Chen,1 Jiayi Liu,4 Yunfei Fan,4 Xiangyang Fan,4 Xiaodong Kuang1 1Department of Pathology, Basic Medical College of Nanchang University, Nanchang, Jiangxi, Peopleâs Republic
Publikováno v:
Remote Sensing, Vol 11, Iss 11, p 1381 (2019)
In this paper, an adaptive contrast enhancement method based on the neighborhood conditional histogram is proposed to improve the visual quality of thermal infrared images. Existing block-based local contrast enhancement methods usually suffer from t
Externí odkaz:
https://doaj.org/article/9a14f749fd804d2d91aa3a871b0dba18
Optimized Contrast Enhancement for Infrared Images Based on Global and Local Histogram Specification
Publikováno v:
Remote Sensing, Vol 11, Iss 7, p 849 (2019)
In this paper, an optimized contrast enhancement method combining global and local enhancement results is proposed to improve the visual quality of infrared images. Global and local contrast enhancement methods have their merits and demerits, respect
Externí odkaz:
https://doaj.org/article/f99c7d5df8ab41719a23b44b61a46504
Publikováno v:
Sensors, Vol 19, Iss 8, p 1818 (2019)
Due to the fast speed and high efficiency, discriminant correlation filter (DCF) has drawn great attention in online object tracking recently. However, with the improvement of performance, the costs are the increase in parameters and the decline of s
Externí odkaz:
https://doaj.org/article/d6b1d0e45735412c8d39b27ade716760
Autor:
en cao, Jun Xu, Yuanqi Gong, Jingjing Yuan, Jiayi Liu, Yunfei Fan, Xiangyang Fan, Anbang Chen, Xiaodong Kuang
Publikováno v:
SSRN Electronic Journal.