Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Xiangshang, Zheng"'
Autor:
Sekuboyina, Anjany, Husseini, Malek E., Bayat, Amirhossein, Löffler, Maximilian, Liebl, Hans, Li, Hongwei, Tetteh, Giles, Kukačka, Jan, Payer, Christian, Štern, Darko, Urschler, Martin, Chen, Maodong, Cheng, Dalong, Lessmann, Nikolas, Hu, Yujin, Wang, Tianfu, Yang, Dong, Xu, Daguang, Ambellan, Felix, Amiranashvili, Tamaz, Ehlke, Moritz, Lamecker, Hans, Lehnert, Sebastian, Lirio, Marilia, de Olaguer, Nicolás Pérez, Ramm, Heiko, Sahu, Manish, Tack, Alexander, Zachow, Stefan, Jiang, Tao, Ma, Xinjun, Angerman, Christoph, Wang, Xin, Brown, Kevin, Kirszenberg, Alexandre, Puybareau, Élodie, Chen, Di, Bai, Yiwei, Rapazzo, Brandon H., Yeah, Timyoas, Zhang, Amber, Xu, Shangliang, Hou, Feng, He, Zhiqiang, Zeng, Chan, Xiangshang, Zheng, Liming, Xu, Netherton, Tucker J., Mumme, Raymond P., Court, Laurence E., Huang, Zixun, He, Chenhang, Wang, Li-Wen, Ling, Sai Ho, Huynh, Lê Duy, Boutry, Nicolas, Jakubicek, Roman, Chmelik, Jiri, Mulay, Supriti, Sivaprakasam, Mohanasankar, Paetzold, Johannes C., Shit, Suprosanna, Ezhov, Ivan, Wiestler, Benedikt, Glocker, Ben, Valentinitsch, Alexander, Rempfler, Markus, Menze, Björn H., Kirschke, Jan S.
Publikováno v:
Medical Image Analysis, Volume 73, October 2021, 102166
Vertebral labelling and segmentation are two fundamental tasks in an automated spine processing pipeline. Reliable and accurate processing of spine images is expected to benefit clinical decision-support systems for diagnosis, surgery planning, and p
Externí odkaz:
http://arxiv.org/abs/2001.09193
Autor:
Sekuboyina, Anjany, Husseini, Malek E., Bayat, Amirhossein, Löffler, Maximilian, Liebl, Hans, Li, Hongwei, Tetteh, Giles, Kukačka, Jan, Payer, Christian, Štern, Darko, Urschler, Martin, Chen, Maodong, Cheng, Dalong, Lessmann, Nikolas, Hu, Yujin, Wang, Tianfu, Yang, Dong, Xu, Daguang, Ambellan, Felix, Amiranashvili, Tamaz, Ehlke, Moritz, Lamecker, Hans, Lehnert, Sebastian, Lirio, Marilia, Olaguer, Nicolás Pérez de, Ramm, Heiko, Sahu, Manish, Tack, Alexander, Zachow, Stefan, Jiang, Tao, Ma, Xinjun, Angerman, Christoph, Wang, Xin, Brown, Kevin, Kirszenberg, Alexandre, Puybareau, Élodie, Chen, Di, Bai, Yiwei, Rapazzo, Brandon H., Yeah, Timyoas, Zhang, Amber, Xu, Shangliang, Hou, Feng, He, Zhiqiang, Zeng, Chan, Xiangshang, Zheng, Liming, Xu, Netherton, Tucker J., Mumme, Raymond P., Court, Laurence E., Huang, Zixun, He, Chenhang, Wang, Li-Wen, Ling, Sai Ho, Huỳnh, Lê Duy, Boutry, Nicolas, Jakubicek, Roman, Chmelik, Jiri, Mulay, Supriti, Sivaprakasam, Mohanasankar, Paetzold, Johannes C., Shit, Suprosanna, Ezhov, Ivan, Wiestler, Benedikt, Glocker, Ben, Valentinitsch, Alexander, Rempfler, Markus, Menze, Björn H., Kirschke, Jan S.
Publikováno v:
In Medical Image Analysis October 2021 73
Autor:
Zhe Xu, Ruiwei Feng, Xiuming Jin, Heping Hu, Shuang Ni, Wen Xu, Xiangshang Zheng, Jian Wu, Ke Yao
Publikováno v:
Clinical & Experimental Ophthalmology. 50:714-723
To evaluate artificial intelligence (AI) models based on objective indices and raw corneal data from the Scheimpflug Pentacam HR system (OCULUS Optikgeräte GmbH, Wetzlar, Germany) for the detection of clinically unaffected eyes in patients with asym
Publikováno v:
Pattern Recognition Letters. 142:58-64
Optic neuropathy is kind of common eye diseases, which usually causes irreversible vision loss. Early diagnosis is key to saving patients’ vision. Due to the similar early clinical manifestations of common optic neuropathy, it may cause misdiagnosi
Autor:
Jian Wu, Xiuming Jin, Danny Z. Chen, Ruiwei Feng, Ke Yao, Xu Zhe, Xiangshang Zheng, Hu Heping
Publikováno v:
IEEE journal of biomedical and health informatics. 25(10)
Keratoconus is one of the most severe corneal diseases, which is difficult to detect at the early stage (i.e., sub-clinical keratoconus) and possibly results in vision loss. In this paper, we propose a novel end-to-end deep learning approach, called
Publikováno v:
IJCAI
Multi-lead electrocardiogram (ECG) provides clinical information of heartbeats from several fixed viewpoints determined by the lead positioning. However, it is often not satisfactory to visualize ECG signals in these fixed and limited views, as some
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e056fbfee38f32a7e5eb7d4b6d0caccc
http://arxiv.org/abs/2105.06293
http://arxiv.org/abs/2105.06293
Autor:
Wang Wenzhe, Xiangshang Zheng, Tianxiang Gao, Jian Wu, Jintai Chen, Danny Z. Chen, Ruiwei Feng
Publikováno v:
IEEE transactions on medical imaging. 40(10)
Many known supervised deep learning methods for medical image segmentation suffer an expensive burden of data annotation for model training. Recently, few-shot segmentation methods were proposed to alleviate this burden, but such methods often showed