Zobrazeno 1 - 10
of 68
pro vyhledávání: '"Xiang Kainan"'
Publikováno v:
Discussiones Mathematicae Graph Theory, Vol 38, Iss 4, Pp 921-946 (2018)
In this paper, through the coupling and martingale method, we prove the order of the largest component in some critical random intersection graphs is n23$n^{{2 \over 3}}$ with high probability and the width of scaling window around the critical proba
Externí odkaz:
https://doaj.org/article/784a7d0ce8ed4201855dc11ad78d0690
In this paper, we focus on studying the long time behaviors of a type of random walk called the $\delta$ once-reinforced random walk ($\delta$-ORRW) on a finite connected graph $G$ with at least 3 vertices for $\delta>0$. This random walk process inv
Externí odkaz:
http://arxiv.org/abs/2206.12801
Autor:
Liu, Yuelin, Xiang, Kainan
Given a quasi-transitive infinite graph $G$ with volume growth rate ${\rm gr}(G),$ a transient biased electric network $(G,\, c_1)$ with bias $\lambda_1\in (0,\,{\rm gr}(G))$ and a recurrent biased one $(G,\, c_2)$ with bias $\lambda_2\in ({\rm gr}(G
Externí odkaz:
http://arxiv.org/abs/2010.01530
Let $\Gamma$ be a nonelementary hyperbolic group with a word metric $d$ and $\partial\Gamma$ its hyperbolic boundary equipped with a visual metric $d_a$ for some parameter $a>1$. Fix a superexponential symmetric probability $\mu$ on $\Gamma$ whose su
Externí odkaz:
http://arxiv.org/abs/2007.13267
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
In this paper, we establish the invariance principle and the large deviation for the biased random walk $RW_{\lambda}$ with $\lambda \in [0,1)$ on $\mathbb{Z}^d, d\geq 1$.
Externí odkaz:
http://arxiv.org/abs/1811.03858
We consider a class of biased random walks on infinite graphs and present several general results on the spectral radius of biased random walk.
Comment: 21 pages. Comments are welcome
Comment: 21 pages. Comments are welcome
Externí odkaz:
http://arxiv.org/abs/1805.01611
The uniform spanning forest measure ($\mathsf{USF}$) on a locally finite, infinite connected graph $G$ with conductance $c$ is defined as a weak limit of uniform spanning tree measure on finite subgraphs. Depending on the underlying graph and conduct
Externí odkaz:
http://arxiv.org/abs/1805.01615
Autor:
Song, He, Xiang, Kainan
We prove that a simple random walk on quasi-transitive graphs with the volume growth being faster than any polynomial of degree 4 has a.s. infinitely many cut times, and hence infinitely many cutpoints. This confirms a conjecture raised by I. Benjami
Externí odkaz:
http://arxiv.org/abs/1712.02543
Publikováno v:
Journal of Applied Probability, 2020 Mar 01. 57(1), 295-313.
Externí odkaz:
https://www.jstor.org/stable/48656207