Zobrazeno 1 - 10
of 83
pro vyhledávání: '"Xavier Roulleau"'
Autor:
Xavier Roulleau
Publikováno v:
Épijournal de Géométrie Algébrique, Vol Volume 6 (2022)
We study the geometry of the K3 surfaces $X$ with a finite number automorphisms and Picard number $\geq 3$. We describe these surfaces classified by Nikulin and Vinberg as double covers of simpler surfaces or embedded in a projective space. We study
Externí odkaz:
https://doaj.org/article/761544f10e184bd6ba3ae90c962809d1
Autor:
Amandine Thépault, Xavier Roulleau, Pauline Loiseau, Laurent Cauquil, Typhaine Poezevara, Bertrand Hyronimus, Ségolène Quesne, Florent Souchaud, Alassane Keita, Marianne Chemaly, Muriel Guyard-Nicodème
Publikováno v:
Pathogens, Vol 9, Iss 5, p 333 (2020)
Since 2018, when a process hygiene criterion for Campylobacter in broilers at the slaughterhouse was implemented across Europe, efforts to reduce Campylobacter at farm level have increased. Despite numerous studies aiming to reduce Campylobacter colo
Externí odkaz:
https://doaj.org/article/4e4f6a983e6b4a7b92183363bfd8f4db
Autor:
Xavier Roulleau
Publikováno v:
International Journal of Mathematics. 33
Nikulin and Vinberg proved that there are only a finite number of lattices of rank $\geq 3$ that are the N\'eron-Severi group of projective K3 surfaces with a finite automorphism group. The aim of this paper is to provide a more geometric description
Publikováno v:
Michigan Mathematical Journal
Michigan Mathematical Journal, 2021
Michigan Mathematical Journal, 2021
20 pages, 6 figures, comments welcome; International audience; We study Deraux's non arithmetic orbifold ball quotient surfaces obtained as birational transformations of a quotient $X$ of a particular Abelian surface $A$. Using the fact that $A$ is t
Autor:
Bertrand Hyronimus, Xavier Roulleau, Muriel Guyard-Nicodème, Ségolène Quesne, Florent Souchaud, Typhaine Poezevara, Alassane Keita, Laurent Cauquil, Pauline Loiseau, Amandine Thépault, Marianne Chemaly
Publikováno v:
Pathogens, Vol 9, Iss 333, p 333 (2020)
Pathogens
Pathogens, MDPI, 2020, 9 (5), ⟨10.3390/pathogens9050333⟩
Volume 9
Issue 5
Pathogens
Pathogens, MDPI, 2020, 9 (5), ⟨10.3390/pathogens9050333⟩
Volume 9
Issue 5
Since 2018, when a process hygiene criterion for Campylobacter in broilers at the slaughterhouse was implemented across Europe, efforts to reduce Campylobacter at farm level have increased. Despite numerous studies aiming to reduce Campylobacter colo
Autor:
Alessandra Sarti, Xavier Roulleau
Publikováno v:
Mathematische Annalen
Mathematische Annalen, Springer Verlag, 2019, 373 (1-2), pp.597-623. ⟨10.1007/s00208-018-1717-5⟩
Mathematische Annalen, 2019, 373 (1-2), pp.597-623. ⟨10.1007/s00208-018-1717-5⟩
Mathematische Annalen, Springer Verlag, 2019, 373 (1-2), pp.597-623. ⟨10.1007/s00208-018-1717-5⟩
Mathematische Annalen, 2019, 373 (1-2), pp.597-623. ⟨10.1007/s00208-018-1717-5⟩
A Nikulin configuration is the data of $16$ disjoint smooth rational curves on a K3 surface. According to a well known result of Nikulin, if a K3 surface contains a Nikulin configuration $\mathcal{C}$, then $X$ is a Kummer surface $X=Km(B)$ where $B$
Publikováno v:
International Mathematics Research Notices
International Mathematics Research Notices, Oxford University Press (OUP), 2018, ⟨10.1093/imrn/rny107⟩
International Mathematics Research Notices, Oxford University Press (OUP), 2018, ⟨10.1093/imrn/rny107⟩
We construct two complex-conjugated rigid surfaces with $p_g=q=2$ and $K^2=8$ whose universal cover is not biholomorphic to the bidisk. We show that these are the unique surfaces with these invariants and Albanese map of degree $2$, apart the family
Autor:
Xavier Roulleau
Publikováno v:
Rocky Mountain J. Math.
Rocky Mountain J. Math., 2021
Rocky Mountain Journal of Mathematics
Rocky Mountain J. Math., 2021
Rocky Mountain Journal of Mathematics
We construct special conics configurations from some points configurations which are the singularities of the dual of a quartic curve.
Comment: 13 pages, few corrections
Comment: 13 pages, few corrections
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::eeb1c40b876c8e77456614a11c45fe03
Autor:
Xavier Roulleau
Publikováno v:
Épijournal de Géométrie Algébrique
Épijournal de Géométrie Algébrique, 2022
Épijournal de Géométrie Algébrique, 2022
We study the geometry of the K3 surfaces $X$ with a finite number automorphisms and Picard number $\geq 3$. We describe these surfaces classified by Nikulin and Vinberg as double covers of simpler surfaces or embedded in a projective space. We study
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::acb13f70d80084f21f669e28d4f78b7c
https://hal.archives-ouvertes.fr/hal-02537218
https://hal.archives-ouvertes.fr/hal-02537218
Autor:
Xavier Roulleau, Amir Džambić
Publikováno v:
Asian Journal of Mathematics. 21:775-790