Zobrazeno 1 - 10
of 58
pro vyhledávání: '"XULONG TANG"'
Publikováno v:
Energies, Vol 7, Iss 5, Pp 3121-3135 (2014)
The present paper investigated the process of the slag wool fabrication using high temperature blast furnace (BF) slag modified by coal ash (CA). The liquidus temperature and viscosity of the slag system with different mass ratios of BF slag and CA w
Externí odkaz:
https://doaj.org/article/db5fd95609ec41f49fd4e1fed7db1487
Autor:
Sebastien Ollivier, Sheng Li, Yue Tang, Stephen Cahoon, Ryan Caginalp, Chayanika Chaudhuri, Peipei Zhou, Xulong Tang, Jingtong Hu, Alex K. Jones
Publikováno v:
IEEE Micro. 43:19-28
Publikováno v:
CCF Transactions on High Performance Computing. 4:461-473
Mobile or FPGA? A Comprehensive Evaluation on Energy Efficiency and a Unified Optimization Framework
Autor:
Geng Yuan, Peiyan Dong, Mengshu Sun, Wei Niu, Zhengang Li, Yuxuan Cai, Yanyu Li, Jun Liu, Weiwen Jiang, Xue Lin, Bin Ren, Xulong Tang, Yanzhi Wang
Publikováno v:
ACM Transactions on Embedded Computing Systems. 21:1-22
Efficient deployment of Deep Neural Networks (DNNs) on edge devices (i.e., FPGAs and mobile platforms) is very challenging, especially under a recent witness of the increasing DNN model size and complexity. Model compression strategies, including wei
Publikováno v:
2023 IEEE International Symposium on High-Performance Computer Architecture (HPCA).
Publikováno v:
2023 IEEE International Symposium on High-Performance Computer Architecture (HPCA).
Publikováno v:
ACM Transactions on Embedded Computing Systems. 20:1-24
Multi-head self-attention (attention mechanism) has been employed in a variety of fields such as machine translation, language modeling, and image processing due to its superiority in feature extraction and sequential data analysis. This is benefited
Publikováno v:
Proceedings of the 41st IEEE/ACM International Conference on Computer-Aided Design.
Publikováno v:
2022 IEEE 40th International Conference on Computer Design (ICCD).
Publikováno v:
Proceedings of the AAAI Conference on Artificial Intelligence. 35:15997-16000
The rapid development and wide utilization of object detection techniques have aroused requirements for both accuracy and speed of object detectors. In this work, we propose a compression-compilation co-design framework to achieve real-time YOLOv4 in