Zobrazeno 1 - 10
of 33
pro vyhledávání: '"Wyser, Benjamin J."'
Publikováno v:
Pacific J. Math. 320 (2022) 103-132
We define the Barbasch-Evens-Magyar varieties. We show they are isomorphic to the smooth varieties defined in [D.~Barbasch-S.~Evens '94] that map generically finitely to symmetric orbit closures, thereby giving resolutions of singularities in certain
Externí odkaz:
http://arxiv.org/abs/1708.06663
Autor:
Wyser, Benjamin J.
We give an explicit description of the closure containment order (or "Bruhat order") on the set of orbits of GL_p \times GL_q on the flag variety GL_{p+q}/B, relative to the parametrization of the orbits by combinatorial objects called "clans". This
Externí odkaz:
http://arxiv.org/abs/1510.01900
Autor:
Woo, Alexander, Wyser, Benjamin J.
Publikováno v:
International Math. Research Notices 2015, 13148--13193
Using recent results of the second author which explicitly identify the "$(1,2,1,2)$-avoiding" $GL(p,\mathbb{C}) \times GL(q,\mathbb{C})$-orbit closures on the flag manifold $GL(p+q,\mathbb{C})/B$ as certain Richardson varieties, we give combinatoria
Externí odkaz:
http://arxiv.org/abs/1403.0363
Autor:
Wyser, Benjamin J., Yong, Alexander
Publikováno v:
Transformation Groups, Volume 22 (2017), Issue 1, pp 267-290
In [Wyser-Yong '13] we introduced polynomial representatives of cohomology classes of orbit closures in the flag variety, for the symmetric pair $(GL_{p+q}, GL_p \times GL_q)$. We present analogous results for the remaining symmetric pairs of the for
Externí odkaz:
http://arxiv.org/abs/1310.7271
Autor:
Wyser, Benjamin J., Yong, Alexander
Publikováno v:
Selecta Math., Volume 20, Issue 4 (2014), 1083-1110
The subgroup K=GL_p x GL_q of GL_{p+q} acts on the (complex) flag variety GL_{p+q}/B with finitely many orbits. We introduce a family of polynomials that specializes to representatives for cohomology classes of the orbit closures in the Borel model.
Externí odkaz:
http://arxiv.org/abs/1308.2632
Autor:
Wyser, Benjamin J.
I give the details of some conjectures regarding Schubert calculus in Lie types B and D. Specifically, I conjecture rules for Schubert structure constants $c_{u,v}^w$ when $X_{w_0u}^v$ is a Richardson variety stable under the spherical Levi subgroup
Externí odkaz:
http://arxiv.org/abs/1302.3157
Autor:
Wyser, Benjamin J.
We use equivariant localization and divided difference operators to determine formulas for the torus-equivariant fundamental cohomology classes of $K$-orbit closures on the flag variety $G/B$ for various symmetric pairs $(G,K)$. In type $A$, we reali
Externí odkaz:
http://arxiv.org/abs/1301.1713
Autor:
Wyser, Benjamin J.
We observe that the expansion in the basis of Schubert cycles for $H^*(G/B)$ of the class of a Richardson variety stable under a spherical Levi subgroup is described by a theorem of Brion. Using this observation, along with a combinatorial model of t
Externí odkaz:
http://arxiv.org/abs/1209.0739
Autor:
Wyser, Benjamin J.
Publikováno v:
Transformation Groups, V. 18, Issue 2 (2013), pp. 557-594
We use equivariant localization and divided difference operators to determine formulas for the torus-equivariant fundamental cohomology classes of $K$-orbit closures on the flag variety $G/B$, where $G = GL(n,\C)$, and where $K$ is one of the symmetr
Externí odkaz:
http://arxiv.org/abs/1206.6907
Autor:
Wyser, Benjamin J.
We give explicit formulas for torus-equivariant fundamental classes of closed $K$-orbits on the flag variety $G/B$ when $G$ is one of the classical groups $SL(n,\C)$, $SO(n,\C)$, or $Sp(2n,\C)$, and $K$ is a symmetric subgroup of $G$. We describe par
Externí odkaz:
http://arxiv.org/abs/1201.4397